A Python module for clustering creators of social media content into networks

Overview

sm_content_clustering

A Python module for clustering creators of social media content into networks.

Currently supports identifying potential networks of Facebook Pages in the CSV output files from CrowdTangle.

Installation

Can install via pip with

pip install git+https://github.com/jdallen83/sm_content_clustering

Install requires pandas and fasttext

Language Prediction

To enable language prediction, you will need to download a fasttext language model. Module was tested with lid.176.ftz.

Usage

Command line

Can be called as a module for command line usage.

For usage guide:

python -m sm_content_clustering -h

Example that will create an output CSV with potential networks and predicted languages from several input CSVs:

python -m sm_content_clustering --add_language --ft_model_path /path/to/lid.176.ftz --output_path /path/to/output.csv --min_threshold 0.03 /path/to/input_1.csv /path/to/input_2.csv

Python

Module can also be called from within Python.

Example that will generate a Pandas dataframe that contains potential networks:

import sm_content_clustering.sm_processor as sm_processor

input_files = ['/path/to/1.csv', '/path/to/2.csv', '/path/to/3.csv']
df = sm_processor.ct_generate_page_clusters(input_files, add_language=True, ft_model_path='/path/to/lid.176.ftz')
print(df)

Options

Arguments for sm_processor.ct_generate_page_clusters() are

  1. infiles: Input files to read content from. Required.
  2. content_cols: Which columns from the input files to use as content for the purposes of clustering identical posts. Default: Message, Image Text, Link, Link Text
  3. add_language: Whether to predict the page and network languages. Default: False
  4. ft_model_path: Path to fasttext model file. Default: None
  5. outfile: Path to write output CSV with potential networks. Default: None
  6. update_every: How often to output clustering status. (Print status 1 every N pages). Default: 1000
  7. min_threshold: Minimum similarity score for clustering. Possible range between 0 and 1, with 1 being perfect high confidence overlap, and 0 being no overlap. Default: 0.03
  8. second_cluster_factor: Requirement that the best matched cluster for a page must score a factor X above the second best matched cluster. Default: 2.5

Methodology

Module assumes you have social media content, which includes the body content of a message and the account that created it. It begins by grouping by all messages, and finds which accounts have shared identical messages within the dataset. It then applies a basic agglomerative clustering algorithm to group the accounts into clusters that are frequently sharing the same messages.

The clustering loops through the list of all accounts, normally sorted in reverse size or popularity, and for each account, searches all existing clusters to see if there is a valid match, given the min_threshold and second_cluster_factor parameters. If there is a match, the account is added to the existing cluster. If there is not a match, then, if there is enough messages from the account to justify, a new cluster will be created with the account acting as the seed. Otherwise the account is discarded.

In theory, any measure could be used to determine if a given account should be added to a given cluster, such as, what fraction of the accounts messages match those within the cluster. Currently, the module combines message coverage, Normalized Pointwise Mutual Information, and a dampening factor that reduces matching score when there is an insufficient number of messages to be confident.

At the end, any clusters that are below a size threshold are discarded.

License

MIT License

CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022