A Python module for clustering creators of social media content into networks

Overview

sm_content_clustering

A Python module for clustering creators of social media content into networks.

Currently supports identifying potential networks of Facebook Pages in the CSV output files from CrowdTangle.

Installation

Can install via pip with

pip install git+https://github.com/jdallen83/sm_content_clustering

Install requires pandas and fasttext

Language Prediction

To enable language prediction, you will need to download a fasttext language model. Module was tested with lid.176.ftz.

Usage

Command line

Can be called as a module for command line usage.

For usage guide:

python -m sm_content_clustering -h

Example that will create an output CSV with potential networks and predicted languages from several input CSVs:

python -m sm_content_clustering --add_language --ft_model_path /path/to/lid.176.ftz --output_path /path/to/output.csv --min_threshold 0.03 /path/to/input_1.csv /path/to/input_2.csv

Python

Module can also be called from within Python.

Example that will generate a Pandas dataframe that contains potential networks:

import sm_content_clustering.sm_processor as sm_processor

input_files = ['/path/to/1.csv', '/path/to/2.csv', '/path/to/3.csv']
df = sm_processor.ct_generate_page_clusters(input_files, add_language=True, ft_model_path='/path/to/lid.176.ftz')
print(df)

Options

Arguments for sm_processor.ct_generate_page_clusters() are

  1. infiles: Input files to read content from. Required.
  2. content_cols: Which columns from the input files to use as content for the purposes of clustering identical posts. Default: Message, Image Text, Link, Link Text
  3. add_language: Whether to predict the page and network languages. Default: False
  4. ft_model_path: Path to fasttext model file. Default: None
  5. outfile: Path to write output CSV with potential networks. Default: None
  6. update_every: How often to output clustering status. (Print status 1 every N pages). Default: 1000
  7. min_threshold: Minimum similarity score for clustering. Possible range between 0 and 1, with 1 being perfect high confidence overlap, and 0 being no overlap. Default: 0.03
  8. second_cluster_factor: Requirement that the best matched cluster for a page must score a factor X above the second best matched cluster. Default: 2.5

Methodology

Module assumes you have social media content, which includes the body content of a message and the account that created it. It begins by grouping by all messages, and finds which accounts have shared identical messages within the dataset. It then applies a basic agglomerative clustering algorithm to group the accounts into clusters that are frequently sharing the same messages.

The clustering loops through the list of all accounts, normally sorted in reverse size or popularity, and for each account, searches all existing clusters to see if there is a valid match, given the min_threshold and second_cluster_factor parameters. If there is a match, the account is added to the existing cluster. If there is not a match, then, if there is enough messages from the account to justify, a new cluster will be created with the account acting as the seed. Otherwise the account is discarded.

In theory, any measure could be used to determine if a given account should be added to a given cluster, such as, what fraction of the accounts messages match those within the cluster. Currently, the module combines message coverage, Normalized Pointwise Mutual Information, and a dampening factor that reduces matching score when there is an insufficient number of messages to be confident.

At the end, any clusters that are below a size threshold are discarded.

License

MIT License

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
Important dataframe statistics with a single command

quick_eda Receiving dataframe statistics with one command Project description A python package for Data Scientists, Students, ML Engineers and anyone

Sven Eschlbeck 2 Dec 19, 2021
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
4CAT: Capture and Analysis Toolkit

4CAT: Capture and Analysis Toolkit 4CAT is a research tool that can be used to analyse and process data from online social platforms. Its goal is to m

Digital Methods Initiative 147 Dec 20, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023