Exploratory data analysis

Related tags

Data AnalysisEDA
Overview

Exploratory data analysis

An Exploratory data analysis APP

APP

TAPIWA CHAMBOKO

portfolio linkedin github

🚀 About Me

I'm a full stack developer experienced in deploying artificial intelligence powered apps

Authors

Acknowledgements

Demo

Live demo

Click here for Live demo

Installation

Install required packages

  pip install streamlit
  pip install pycaret
  pip insatll scikit-learn==0.23.2
  pip install numpy
  pip install seaborn 
  pip install pandas
  pip install matplotlib
  pip install plotly-express
  pip install streamlit-lottie

Datasets

  • Drop your Datasets in the app to get resuilts
  • you can use he exaple data provided in the app

Code

import streamlit as st
import pandas as pd  
import plotly.express as px  
import base64  
from io import StringIO, BytesIO  
import numpy as np
import pandas as pd
from sklearn import datasets
import matplotlib.pyplot as plt
from pandas_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report

def app():
    st.markdown('''
# **Exploratory data analysis App**
Please upload your xlsx file or click the button below to use example dataset
---
''')

# Upload CSV data
    with st.sidebar.header('Upload your XLSX data'):
        uploaded_file = st.sidebar.file_uploader("Upload your input XLSX file", type=["xlsx"])
       

    # Pandas Profiling Report
    if uploaded_file is not None:
        @st.cache
        def load_csv():
            csv = pd.read_excel(uploaded_file,engine='openpyxl')
            #csv = pd.read_csv(uploaded_file,encoding='latin1', index_col=None,usecols = "A,B,C,D,E,F,H,G,H,I,J")
            return csv
        df = load_csv()
        pr = ProfileReport(df, explorative=True)
        st.header('**Input DataFrame**')
        st.write(df)
        st.write('---')
        st.header('**Exploratory data analysis Report**')
        st_profile_report(pr)
        
    else:
        st.info('Awaiting for XLSX file to be uploaded.')
        
        if st.button('Press to use Example Dataset'):
            # Example data
            @st.cache
            def load_data():
                a = pd.DataFrame(
                    np.random.rand(100, 5),
                    columns=['a', 'b', 'c', 'd', 'e']
                )
                return a
            df = load_data()
            pr = ProfileReport(df, explorative=True)
            st.header('**Input DataFrame**')
            st.write(df)
            st.write('---')
            st.header('**Exploratory data analysis Report**')
            st_profile_report(pr)

Deployment

To deploy this project we used streamlit to create Web App

  • Run this code below
  streamlit run app.py 

Appendix

Happy Coding!!!!!!

Owner
tapiwa chamboko
tapiwa chamboko
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022