Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

Overview

ElasticBatch

Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames

Build Status Coverage Status PyPI - Python Version

Overview

ElasticBatch makes it easy to efficiently insert batches of data in the form of Python dictionaries or pandas DataFrames into Elasticsearch. An efficient pattern when processing data bound for Elasticsearch is to collect data records ("documents") in a buffer to be bulk-inserted in batches. ElasticBatch provides this functionality to ease the overhead and reduce the code involved in inserting large batches or streams of data into Elasticsearch.

ElasticBatch has been tested with Elasticsearch 7.x, but should work with earlier versions.

Features

ElasticBatch implements the following features (see Usage for examples and more details) that allow a user to:

  • Work with documents as lists of dicts or as rows of pandas DataFrames
  • Add documents to a buffer that will automatically flush (insert its contents to Elasticsearch) when it is full
  • Interact with an intuitive interface that handles all of the underlying Elasticsearch client logic on behalf of the user
  • Track the elapsed time a document has been in the buffer, allowing a user to flush the buffer at a desired time interval even when it is not full
  • Work within a context manager that will automatically flush before exiting, alleviating the need for extra code to ensure all documents are written to the database
  • Optionally dump the buffer contents (documents) to a file before exiting due to an uncaught exception
  • Automatically add Elasticsearch metadata fields (e.g., _index, _id) to each document via user-supplied functions

Installation

This package is hosted on PyPI and can be installed via pip:

  • To install with the ability to process pandas DataFrames:
    $ pip install elasticbatch[pandas]
    
  • For a more lightweight installation with only the ability to process native Python dicts:
    $ pip install elasticbatch
    

The only dependency of the latter is elasticsearch whereas the former will also install pandas as a dependency.

To instead install from source:

$ git clone https://github.com/dkaslovsky/ElasticBatch.git
$ cd ElasticBatch
$ pip install ".[pandas]"

To install from source without the pandas dependency, replace the last line above with

$ pip install .

Usage

Basic Usage

Start by importing the ElasticBuffer class:

>>> from elasticbatch import ElasticBuffer

ElasticBuffer uses sensible defaults when initialized without parameters:

>>> esbuf = ElasticBuffer()

Alternatively, one can pass any of the following parameters:

  • size: (int) number of documents the buffer can hold before flushing to Elasticsearch; defaults to 5000.
  • client_kwargs: (dict) configuration passed to the underlying elasticsearch.Elasticsearch client; see the Elasticsearch documentation for all available options.
  • bulk_kwargs: (dict) configuration passed to the underlying call to elasticsearch.helpers.bulk for bulk insertion; see the Elasticsearch documentation for all available options.
  • verbose_errs: (bool) whether verbose (True, default) or truncated (False) exceptions are raised; see Exception Handling for more details.
  • dump_dir: (str) directory to write buffer contents when exiting context due to raised Exception; defaults to None for not writing to file.
  • **metadata_funcs: (callable) functions to apply to each document for adding Elasticsearch metadata.; see Automatic Elasticsearch Metadata Fields for more details.

Once initialized, ElasticBuffer exposes two methods, add and flush. Use add to add documents to the buffer, noting that all documents in the buffer will be flushed and inserted into Elasticsearch once the number of documents exceeds the buffer's size:

>>> docs = [
        {'_index': 'my-index', 'a': 1, 'b': 2.1, 'c': 'xyz'},
        {'_index': 'my-index', 'a': 3, 'b': 4.1, 'c': 'xyy'},
        {'_index': 'my-other-index', 'a': 5, 'b': 6.1, 'c': 'zzz'},
        {'_index': 'my-other-index', 'a': 7, 'b': 8.1, 'c': 'zyx'},
    ]
>>> esbuf.add(docs)

Note that all metadata fields required for indexing into Elasticsearch (e.g., _index above) must either be included in each document or added programmatically via callable kwarg parameters supplied to the ElasticBuffer instance (see below).

To manually force a buffer flush and insert all documents to Elasticsearch, use the flush method which does not accept any arguments:

>>> esbuf.flush()

A third method, show(), exists mostly for debug purposes and prints all documents currently in the buffer as newline-delimited json.

pandas DataFrames

One can directly insert a pandas DataFrame into the buffer and each row will be treated as a document:

>>> import pandas as pd
>>> df = pd.DataFrame(docs)
>>> print(df)

           _index  a    b    c
0        my-index  1  2.1  xyz
1        my-index  3  4.1  xyy
2  my-other-index  5  6.1  zzz
3  my-other-index  7  8.1  zyx

>>> esbuf.add(df)

The DataFrame's index (referring to df.index and not the column named _index) is ignored unless it is named, in which case it is added as an ordinary field (column).

Context Manager

ElasticBuffer can also be used as a context manager, offering the advantages of automatically flushing the remaining buffer contents when exiting scope as well as optionally dumping the buffer contents to a file before exiting due to an unhandled exception.

>>> with ElasticBuffer(size=100, dump_dir='/tmp') as esbuf:
       for doc in document_stream:
           doc = process_document(doc)  # some user-defined application-specific processing function
           esbuf.add(doc)

Elapsed Time

When using ElasticBuffer in a service consuming messages from some external source, it can be important to track how long messages have been waiting in the buffer to be flushed. In particular, a user may wish to flush, say, every hour to account for the situation where only a trickle of data is coming in and the buffer is not filling up. ElasticBuffer provides the elapsed time (in seconds) that its oldest message has been in the buffer:

>>> esbuf.oldest_elapsed_time

5.687833070755005  # the oldest message was inserted ~5.69 seconds ago

This information can be used to periodically check the elapsed time of the oldest message and force a flush if it exceeds a desired threshold.

Automatic Elasticsearch Metadata Fields

An ElasticBuffer instance can be initialized with kwargs corresponding to callable functions to add Elasticsearch metadata fields to each document added to the buffer:

>>> def my_index_func(doc): return 'my-index'
>>> def my_id_func(doc): return sum(doc.values())

>>> esbuf = ElasticBuffer(_index=my_index_func, _id=my_id_func)

>>> docs = [
        {'a': 1, 'b': 2},
        {'a': 8, 'b': 9},
    ]
>>> esbuf.add(docs)

>>> esbuf.show()

{"a": 1, "b": 2, "_index": "my-index", "_id": 3}
{"a": 8, "b": 9, "_index": "my-index", "_id": 17}

Callable kwargs add key/value pairs to each document, where the key corresponds to the name of the kwarg and the value is the function's return value. Each function must accept one argument (the document as a dict) and return one value. This also works for DataFrames, as they are transformed to documents (dicts) before applying the supplied metadata functions.

The key/value pairs are added to the top-level of each document. Note that the user need not add documents with data nested under a _source key, as metadata fields can be handled at the same level as the data fields. For further details, see the underlying Elasticsearch client bulk insert documentation on handling of metadata fields in flat dicts.

Exception Handling

For exception handing, ElasticBatch provides the base exception ElasticBatchError:

>>> from elasticbatch import ElasticBatchError

as well as the more specific ElasticBufferFlushError raised on errors flushing to Elasticsearch:

>>> from elasticbatch.exceptions import ElasticBufferFlushError

Elasticsearch exception messages can contain a copy of every document related to a failed bulk insertion request. As such messages can be very large, the verbose_errors flag can be used to optionally truncate the error message. When ElasticBuffer is initialized with verbose_errors=True, the entirety of the error message is returned. When verbose_errors=False, a shorter, descriptive message is returned. In both cases, the full, potentially verbose, exception is available via the err property on the raised ElasticBufferFlushError.

Tests

To run tests:

$ python -m unittest discover -v

The awesome green package is also highly recommended for running tests and reporting test coverage:

$ green -vvr
You might also like...
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

A powerful data analysis package based on mathematical step functions.  Strongly aligned with pandas.
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Statistical package in Python based on Pandas
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio é criar um fluxo de

Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Pandas and Dask test helper methods with beautiful error messages.
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Releases(v1.0.0)
Owner
Dan Kaslovsky
Dan Kaslovsky
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological images.

cleanX CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological

Candace Makeda Moore, MD 20 Jan 05, 2023
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays o

HyperSpy 411 Dec 27, 2022
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022