Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

Overview

Version Build status Code coverage Support Python versions

weightedcalcs

weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more.

Features

  • Plays well with pandas.
  • Support for weighted means, medians, quantiles, standard deviations, and distributions.
  • Support for grouped calculations, using DataFrameGroupBy objects.
  • Raises an error when your data contains null-values.
  • Full test coverage.

Installation

pip install weightedcalcs

Usage

Getting started

Every weighted calculation in weightedcalcs begins with an instance of the weightedcalcs.Calculator class. Calculator takes one argument: the name of your weighting variable. So if you're analyzing a survey where the weighting variable is called "resp_weight", you'd do this:

import weightedcalcs as wc
calc = wc.Calculator("resp_weight")

Types of calculations

Currently, weightedcalcs.Calculator supports the following calculations:

  • calc.mean(my_data, value_var): The weighted arithmetic average of value_var.
  • calc.quantile(my_data, value_var, q): The weighted quantile of value_var, where q is between 0 and 1.
  • calc.median(my_data, value_var): The weighted median of value_var, equivalent to .quantile(...) where q=0.5.
  • calc.std(my_data, value_var): The weighted standard deviation of value_var.
  • calc.distribution(my_data, value_var): The weighted proportions of value_var, interpreting value_var as categories.
  • calc.count(my_data): The weighted count of all observations, i.e., the total weight.
  • calc.sum(my_data, value_var): The weighted sum of value_var.

The obj parameter above should one of the following:

  • A pandas DataFrame object
  • A pandas DataFrame.groupby object
  • A plain Python dictionary where the keys are column names and the values are equal-length lists.

Basic example

Below is a basic example of using weightedcalcs to find what percentage of Wyoming residents are married, divorced, et cetera:

import pandas as pd
import weightedcalcs as wc

# Load the 2015 American Community Survey person-level responses for Wyoming
responses = pd.read_csv("examples/data/acs-2015-pums-wy-simple.csv")

# `PWGTP` is the weighting variable used in the ACS's person-level data
calc = wc.Calculator("PWGTP")

# Get the distribution of marriage-status responses
calc.distribution(responses, "marriage_status").round(3).sort_values(ascending=False)

# -- Output --
# marriage_status
# Married                                0.425
# Never married or under 15 years old    0.421
# Divorced                               0.097
# Widowed                                0.046
# Separated                              0.012
# Name: PWGTP, dtype: float64

More examples

See this notebook to see examples of other calculations, including grouped calculations.

Max Ghenis has created a version of the example notebook that can be run directly in your browser, via Google Colab.

Weightedcalcs in the wild

Other Python weighted-calculation libraries

Owner
Jeremy Singer-Vine
Human @ Internet • Data Editor @ BuzzFeed News • Newsletter-er @ data-is-plural.com
Jeremy Singer-Vine
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
The repo for mlbtradetrees.com. Analyze any trade in baseball history!

The repo for mlbtradetrees.com. Analyze any trade in baseball history!

7 Nov 20, 2022