This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

Overview

📈 Statistical Quality Control 📉

This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

What is Statistical Quality Control?

  • statistical quality control is the use of statistical methods in the monitoring and maintaining of the quality of products and services. One method, referred to as acceptance sampling, can be used when a decision must be made to accept or reject a group of parts or items based on the quality found in a sample

  • Statistical quality control can be simply defined as an economic & effective system of maintaining & improving the quality of outputs throughout the whole operating process of specification, production & inspection based on continuous testing with random samples.

Why Statistical Quality Control?, what makes it important?

  • Statistical quality control techniques are extremely important for operating the estimable variations embedded in almost all manufacturing processes. Such variations arise due to raw material, consistency of product elements, processing machines, techniques deployed and packaging applications

  • SQC serves as a medium allowing manufacturers to attain maximum benefits by following controlled testing of manufactured products. Using this procedure, a manufacturing team can investigate the range of products with certain values that can be expected to reside under some existing conditions.

This statistical Quality Control can be easily implemented in python in few lines of code and graph can be beautifully visualized and analysed using matplotlib library.

For example lets consider a real life problem statement given like this:

  • A quality control inspector at the Cocoa Fizz soft drink company has taken ten samples with four observations each of the volume of bottles filled. The data and the computed means are shown in the table, use this information to develop control limits of three standard deviations for the bottling operation.

Data can be taken taken into an excel sheet like this:

After appending the data into excel sheet just hit run, statistical calculation will be done and you're greeted with this two graphs one is X-chat and the other one is R-chart.The x-bar and R-chart are quality control charts used to monitor the mean and variation of a process based on samples taken in a given time.X-bar chart: The mean or average change in process over time from subgroup values. The control limits on the X-Bar brings the sample’s mean and center into consideration.R-chart: The range of the process over the time from subgroups values. This monitors the spread of the process over the time.

Depending upon Data Graphs look like this:

(x-bar control chart)

(r-bar control chart)

From the both X bar and R charts it is clearly evident that the process is almost stable. If by chance the process is unstable that is there are many point in the outer region of quality control you make the process stable by changing the control limits,After the process stabilized, still if any point going out of control limits, it indicates an assignable cause exists in the process that needs to be addressed. This is an ongoing process to monitor the process performance.

Note:

  • Update data in excel before running the script, any number of rown and coloumns can be given.
  • Import used in this project are:
import pandas as pd 
import statistics
from statistics import mean,pstdev
import matplotlib.pyplot as plt
import numpy as np

make sure to install them before hand.

  • Code and logic is xplained in jupyter note book , do check that out
  • If you're interested more on this topic u can refer this PDF

Peace ✌️ .

Owner
SasiVatsal
open source enthusiast.🧑🏼‍💻 Just a teen interest in unix/linux 💻,android📱platforms, intermediate in python, js, c/c++.
SasiVatsal
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Falcon: Interactive Visual Analysis for Big Data

Falcon: Interactive Visual Analysis for Big Data Crossfilter millions of records without latencies. This project is work in progress and not documente

Vega 803 Dec 27, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021