Analytical view of olist e-commerce in Brazil

Overview

Analysis of E-Commerce Public Dataset by Olist

The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this we will first go through an exploratory data analysis using graphical tools to create self explanatory plots for better understanding what is behind braziian online purchasing. It also deals with many real-world challenges faced by e-commerce websites that includes predicting customer lifetime value using RFM score and k-means clustering, customer segmentation to increase retention rate and find out best valued customers by segmenting them into homogeneous groups, understand the traits/behaviour of each group, and engage them with relevant targeted campaigns.

Dataset

Brazilian ecommerce public dataset of orders made at Olist Store. The dataset has information of 100k orders from 2016 to 2018 made at multiple marketplaces in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers. Also included is a geolocation dataset that relates Brazilian zip codes to lat/lng coordinates.

This dataset have nine tables which are connected with few common attributes. https://www.kaggle.com/olistbr/brazilian-ecommerce

Approach

We started with EDA and Trend Analysis of Products and Customers to get insights for a business Analyst. Then we Segmented customers into specific clusters based on Cohort Analysis, RFM Modeling using their purchasing behavior. Then we will use machine Learning techniques called K-Means to get more customized and fine tunned groupings. Then we used uplift/persuasion modeling to identify which customer needs treatment and identify Upselling & Cross Selling Opportunities Predict Customer Lifetime value (LTV)

Customer Segmentation and RFM Modeling

Using RFM anaylsis and K-means Clustering, we created the below Clusters or segments of customers to further give targetted recommendation to them.

Potential Loyalists — High potential to enter our loyal customer segments, why not throw in some freebies on their next purchase to show that you value them!

Needs Attention — Showing promising signs with quantity and value of their purchase but it has been a while since they last bought sometime from you. Let's target them with their wishlist items and a limited time offer discount.

Hibernating Almost Lost — Made some initial purchases but have not seen them since. Was it a bad customer experience? Or product-market fit? Let's spend some resources building our brand awareness with them.

Loyal Customers — These are the most loyal customers. They are active with frequent purchases and high monetary value. They could be the brand evangelists and should focus on serving them well. They could be the best customers to get feedback on any new product launches or be the early adopters or promoters.

Champions Big Spenders - It is always a good idea to carefully “incubate” all new customers, but because these customers spent a lot on their purchase, it’s even more important. Like with the Best Customers group, it’s important to make them feel valued and appreciated – and to give them terrific incentives to continue interacting with the brand. image

Product Recommendation and Geospatial Rating Analysis

Different products are recommended based on popularity of new customer and based on highly rated categories. A geoplot is created showing ratings by state on Brazilian map.

image

Owner
Gurpreet Singh
MSc in Data Science & Business Analytics Grad at HEC Montreal. Growing towards becoming a data scientist.
Gurpreet Singh
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023
University Challenge 2021 With Python

University Challenge 2021 This repository contains: The TeX file of the technical write-up describing the University / HYPER Challenge 2021 under late

2 Nov 27, 2021
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
ELFXtract is an automated analysis tool used for enumerating ELF binaries

ELFXtract ELFXtract is an automated analysis tool used for enumerating ELF binaries Powered by Radare2 and r2ghidra This is specially developed for PW

Monish Kumar 49 Nov 28, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023