Analyzing Covid-19 Outbreaks in Ontario

Overview

Analyzing Covid-19 Outbreaks in Ontario

About us (Name - Github ID)

Vishwaajeeth Kamalakkannan - Vishwaajeeth

Haider bajwa - printhaider

Vrund Patel - Vrund-Patel

Fahad Fauzan - fahadf-14

Introduction

Over the past year, the world has been shaken by the novel Corona virus. From schools to work, the way we do everything has changed. What's important for us now is to learn how we can overcome this epedemic and that is where data analysis is very crucial. In this report we will be analyzing outbreaks across Ontario and looking into important details such as which group was most affected?When did the number of outbreaks increase and how the return of school has had on cases. The first dataset we used in this project is the "Ongoing outbreaks" dataset which was provided from data.ontario (https://data.ontario.ca/dataset/ontario-covid-19-outbreaks-data/resource/66d15cce-bfee-4f91-9e6e-0ea79ec52b3d) The dataset (as of october 29) has 8085 reocords. It includes 7 unique outbreak groups:

  • Workplace
  • Congregate Care
  • Education
  • Congregate Living
  • Recreational
  • Other/Unknown
  • Out of Province Outbreak

the dataset also includes 28 unique outbreak subgroups (they are specific like elementary school etc). The data starts from 2020-11-01 till 2021-10-28 ( dataset itself is updated weekly but we chose to use a dated file as it is easier to keep data results). The second dataset we used in this project was "Case rates by vaccination status and age group" also provided through data.ontario (https://data.ontario.ca/dataset/covid-19-vaccine-data-in-ontario/resource/c08620e0-a055-4d35-8cec-875a459642c3) This dataset focuses on the outbreak rates per different vaccination status across different age groups. It includes the dates and the following age groups:

  • 0-11 years
  • 12-17 years
  • 18-39 years
  • 40-59 years
  • 60-79 years
  • 80+ years
  • 0-11 years

Other than the ager groups, the data set includes categories of the following to help us better understand outbreaks relations to vaccination status:

  • cases_unvac_rate_per100K : unvaccinated group
  • cases_partial_vac_rate_per100K : partially vaccinated group
  • cases_full_vac_rate_per100K : fully vaccinated group
  • cases_unvac_rate_7ma : unvaccinated group 7 day moving average
  • cases_partial_vac_rate_7ma partially partially vaccinated groupvaccinated group 7 day moving average
  • cases_full_vac_rate_7ma : fully vaccinated group 7 day moving average

Discussion

Upon researching, we had found several interesting stuff which at the end of the day helped us better understand Covid-19. One being the outbreaks being categorized.

Figure 1:

As seen in figure 1, we came to know that most outbreaks happened in the workplace. This makes sense because that is where alot of people spend majority of their day. The second highest one was the Long-Term care homes, this is because older people have weaker immune systems so it is much easier having an outbreak there. What surprised us were how there were some Medical/Health service cases. We believe that these were caused by an outbreak amongst the staff, this goes to show that even the most sanitary places can still experience outbreaks.

After categorizing the cases, we decided to check on the trend of the outbreaks such increases, decreases and statistical values such as mean. Here we attached a visual representation of the outbreaks categorized by months:

Figure 2:

The blue line included in the graph above (figure 2) shows the average amount of cases per month which was 15082 covid infections per month. The first 7 months of outbreaks stayed above the monthy average and after that it dropped. The number of Cases started to increase from 2020-11 till 2021-01 ( 2 months) as after that the cases seemed to have significanlty drop. From the data, a second wave is apparent as when rules started to get a bit lax, from 2021-03 till 2021-04 ( 1 month) cases started to uptrend alot. From that point onwards, the monthly amount of cases significantly dropped.

What we found quite interesting was how after the drop (2021-05 - 2021-06), the cases started to gradually increase again. Most importantly they increased alot from september 2021, that is the time of the year when the government pushed the narrative of "safe and normal" return to school but has it really been? We decided to further analyze the data by using the groups and sub group categories to help us narrow down to our target demographic which was the elementary students. We split up the data into elementary students, secondary students and post-secondary students. here are some visual representations of our findings:

Figure 3:

Here in the line graph above (figure 3). We found that there were an increase in cases in august 2021 but it was handled and the following months showed a downtrend

Figure 4:

Here in the line graph above (Figure 4). We found that there was a steady increase in cases starting from July.The trend of the line is steeply upwards showing the likely hood of this continuing.

Figure 5:

here in the last line graph (figure 5) which reprsents the elementary students, shows a massive increase of cases from august with line trend steeply high like an exponential graph.

Figure 6:

Here in the last graph (Figure 6), we had combined all of our school findings into a bar graph showing the number of outbreaks.

After carefully analyzing all the charts as well as the combined chart at the end. We have concluded that the push of a 'safe and normal' return to school did not hold up to its statement. When the province went into the second lockdown last school year, elementary schools experienced a peak of 4300 breakouts in April. Over the months of May 2021 - August 2021, Students at all levels of educations had less than 300 cases as the lockdown continued. When the government assured that it was safe to return to school, the cases started to rise. From August 2021 to September 2021 there was an increase of 3187% of cases among elementary students while other instituitions did not experience much. The following month received an increase of 238% from the previous amount and now the outbreaks stand at 2360.

The age group 0-14 makes 15.3%(link: https://www150.statcan.gc.ca/n1/daily-quotidien/210929/cg-d003-eng.htm) of Ontario's population. The average monthly cases across Ontario are 15,082 outbreaks a month. Onto our previous findings, elementary students made upto (2,360/15,082 X 100) 15.6% of the total cases. That number had gone up 238% from the previous month(6.5% ~ 988 cases from the average). Our findings suggest that ever since the government re-introduced in person learning, the cases amongst elementary students has been in an uptrend and has already reached 54% of last lockdowns all time highs. This goes onto prove that no, school has not been safe and these findings suggest that we might have more problems along the way, potentially as a 3rd lockdown.

Out of pure curiosity, we wanted to know if there were any trends with vaccination status and covid amongst elmentary students. Here we have concluded 2 graphs, one for vaccinated and the other for unvaccinated:

Figure 7:

Figure 8:

As you the viewer, can see that the difference between both is very significant. Outbreak percentage by vaccinated students was near zero most of the school year with occasional spikes caused due to low volume of cases. Then that raises the question, are all the cases coming from unvaccinated students? The first graph here suggests that unvaccinated students are more likely to get covid and it is more apparent as the percentage has nearly doubled itself from October to November. This goes to show us that in order to protect your kids from covid-19, full vaccination is a must.

There is a lot of potential for data science applications using this data. The ongoing outbreak data can be used as a basis for models of prediction. We can use the data we currently have to prevent future outbreaks from happening. For example if there are more outbreaks happening in schools, we can restrict the access that students and teachers have to schools (make it online). With both of the data sets as well as information we have extracted, we can really help future issues. When school closes down for summer break, school leaders can get ideas on how to prevent future major outbreaks as well as help the schools with the most outbreaks better get protection. What both these major data sets can also help with is future variants of covid, we can better plan ahead for new variants as well as help pin point specific location thats new variants could be as well as see if those areas are vaccinated or not.

Conclusion

In conclusion, our research on covid-19 outbreaks in Ontario using data.ontario provided datasets have helped us better understand the virus. With the knowledge and skills we have learned in our data analysis class have better prepared us in making these discoveries as we were able to efficently process large amounts of data and find out which places have high outbreaks, outbreak trends as well as see if our government was right about the "safe and normal" return for elementary students. We believe that like every project, there is always room for improvment. As we look back on this project one thing we could improve on is using an automatic updating data set which updates the charts every week as we believe that covid trends could change at any given time and its important to take current data into account.

ReadME

In order to recreate the data used in this blog report, you will need to run the following code which contains the necessary dependencies and converts the csv files into data frames:

To recreate Figure 1 run the following code:

To recreate Figure 2 run the following code:

To recreate Figure 3 run the following code:

To recreate Figure 4 run the following code:

To recreate Figure 5 run the following code:

To recreate Figure 6 run the following code:

To recreate Figure 7 run the following code:

To recreate Figure 8 run the following code:

Acknowledgements

This project was submitted as the final course project for CSCI 2000U “Scientific Data Analysis” during Fall 2021. The authors certify that the work in this repository is original and that all appropriate resources are rightfully cited.

Owner
Vishwaajeeth Kamalakkannan
Vishwaajeeth Kamalakkannan
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023