PipeChain is a utility library for creating functional pipelines.

Overview

PipeChain

Motivation

PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Australian phone numbers from our users. We need to clean this data before we insert it into the database. With PipeChain, you can do this whole process in one neat pipeline:

from pipechain import PipeChain, PLACEHOLDER as _

nums = [
    "493225813",
    "0491 570 156",
    "55505488",
    "Barry",
    "02 5550 7491",
    "491570156",
    "",
    "1800 975 707"
]

PipeChain(
    nums
).pipe(
    # Remove spaces
    map, lambda x: x.replace(" ", ""), _
).pipe(
    # Remove non-numeric entries
    filter, lambda x: x.isnumeric(), _
).pipe(
    # Add the mobile code to the start of 8-digit numbers
    map, lambda x: "04" + x if len(x) == 8 else x, _
).pipe(
    # Add the 0 to the start of 9-digit numbers
    map, lambda x: "0" + x if len(x) == 9 else x, _
).pipe(
    # Convert to a set to remove duplicates
    set
).eval()
{'0255507491', '0455505488', '0491570156', '0493225813', '1800975707'}

Without PipeChain, we would have to horrifically nest our code, or else use a lot of temporary variables:

set(
    map(
        lambda x: "0" + x if len(x) == 9 else x,
        map(
            lambda x: "04" + x if len(x) == 8 else x,
            filter(
                lambda x: x.isnumeric(),
                map(
                    lambda x: x.replace(" ", ""),
                    nums
                )
            )
        )
    )
)
{'0255507491', '0455505488', '0491570156', '0493225813', '1800975707'}

Installation

pip install pipechain

Usage

Basic Usage

PipeChain has only two exports: PipeChain, and PLACEHOLDER.

PipeChain is a class that defines a pipeline. You create an instance of the class, and then call .pipe() to add another function onto the pipeline:

from pipechain import PipeChain, PLACEHOLDER
PipeChain(1).pipe(str)
PipeChain(arg=1, pipes=[functools.partial(
   
    )])

   

Finally, you call .eval() to run the pipeline and return the result:

PipeChain(1).pipe(str).eval()
'1'

You can "feed" the pipe at either end, either during construction (PipeChain("foo")), or during evaluation .eval("foo"):

PipeChain().pipe(str).eval(1)
'1'

Each call to .pipe() takes a function, and any additional arguments you provide, both positional and keyword, will be forwarded to the function:

PipeChain(["b", "a", "c"]).pipe(sorted, reverse=True).eval()
['c', 'b', 'a']

Argument Position

By default, the previous value is passed as the first positional argument to the function:

PipeChain(2).pipe(pow, 3).eval()
8

The only magic here is that if you use the PLACEHOLDER variable as an argument to .pipe(), then the pipeline will replace it with the output of the previous pipe at runtime:

PipeChain(2).pipe(pow, 3, PLACEHOLDER).eval()
9

Note that you can rename PLACEHOLDER to something more usable using Python's import statement, e.g.

from pipechain import PLACEHOLDER as _
PipeChain(2).pipe(pow, 3, _).eval()
9

Methods

It might not see like methods will play that well with this pipe convention, but after all, they are just functions. You should be able to access any object's method as a function by accessing it on that object's parent class. In the below example, str is the parent class of "":

"".join(["a", "b", "c"])
'abc'
PipeChain(["a", "b", "c"]).pipe(str.join, "", _).eval()
'abc'

Operators

The same goes for operators, such as +, *, [] etc. We just have to use the operator module in the standard library:

from operator import add, mul, getitem

PipeChain(5).pipe(mul, 3).eval()
15
PipeChain(5).pipe(add, 3).eval()
8
PipeChain(["a", "b", "c"]).pipe(getitem, 1).eval()
'b'

Test Suite

Note, you will need poetry installed.

To run the test suite, use:

git clone https://github.com/multimeric/PipeChain.git
cd PipeChain
poetry install
poetry run pytest test/test.py
Owner
Michael Milton
Michael Milton
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

Lawrence Livermore National Laboratory 14 Aug 19, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Manage large and heterogeneous data spaces on the file system.

signac - simple data management The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, and reproduc

Glotzer Group 109 Dec 14, 2022
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Orchest is a browser based IDE for Data Science.

Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well

Orchest 3.6k Jan 09, 2023
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022