PipeChain is a utility library for creating functional pipelines.

Overview

PipeChain

Motivation

PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Australian phone numbers from our users. We need to clean this data before we insert it into the database. With PipeChain, you can do this whole process in one neat pipeline:

from pipechain import PipeChain, PLACEHOLDER as _

nums = [
    "493225813",
    "0491 570 156",
    "55505488",
    "Barry",
    "02 5550 7491",
    "491570156",
    "",
    "1800 975 707"
]

PipeChain(
    nums
).pipe(
    # Remove spaces
    map, lambda x: x.replace(" ", ""), _
).pipe(
    # Remove non-numeric entries
    filter, lambda x: x.isnumeric(), _
).pipe(
    # Add the mobile code to the start of 8-digit numbers
    map, lambda x: "04" + x if len(x) == 8 else x, _
).pipe(
    # Add the 0 to the start of 9-digit numbers
    map, lambda x: "0" + x if len(x) == 9 else x, _
).pipe(
    # Convert to a set to remove duplicates
    set
).eval()
{'0255507491', '0455505488', '0491570156', '0493225813', '1800975707'}

Without PipeChain, we would have to horrifically nest our code, or else use a lot of temporary variables:

set(
    map(
        lambda x: "0" + x if len(x) == 9 else x,
        map(
            lambda x: "04" + x if len(x) == 8 else x,
            filter(
                lambda x: x.isnumeric(),
                map(
                    lambda x: x.replace(" ", ""),
                    nums
                )
            )
        )
    )
)
{'0255507491', '0455505488', '0491570156', '0493225813', '1800975707'}

Installation

pip install pipechain

Usage

Basic Usage

PipeChain has only two exports: PipeChain, and PLACEHOLDER.

PipeChain is a class that defines a pipeline. You create an instance of the class, and then call .pipe() to add another function onto the pipeline:

from pipechain import PipeChain, PLACEHOLDER
PipeChain(1).pipe(str)
PipeChain(arg=1, pipes=[functools.partial(
   
    )])

   

Finally, you call .eval() to run the pipeline and return the result:

PipeChain(1).pipe(str).eval()
'1'

You can "feed" the pipe at either end, either during construction (PipeChain("foo")), or during evaluation .eval("foo"):

PipeChain().pipe(str).eval(1)
'1'

Each call to .pipe() takes a function, and any additional arguments you provide, both positional and keyword, will be forwarded to the function:

PipeChain(["b", "a", "c"]).pipe(sorted, reverse=True).eval()
['c', 'b', 'a']

Argument Position

By default, the previous value is passed as the first positional argument to the function:

PipeChain(2).pipe(pow, 3).eval()
8

The only magic here is that if you use the PLACEHOLDER variable as an argument to .pipe(), then the pipeline will replace it with the output of the previous pipe at runtime:

PipeChain(2).pipe(pow, 3, PLACEHOLDER).eval()
9

Note that you can rename PLACEHOLDER to something more usable using Python's import statement, e.g.

from pipechain import PLACEHOLDER as _
PipeChain(2).pipe(pow, 3, _).eval()
9

Methods

It might not see like methods will play that well with this pipe convention, but after all, they are just functions. You should be able to access any object's method as a function by accessing it on that object's parent class. In the below example, str is the parent class of "":

"".join(["a", "b", "c"])
'abc'
PipeChain(["a", "b", "c"]).pipe(str.join, "", _).eval()
'abc'

Operators

The same goes for operators, such as +, *, [] etc. We just have to use the operator module in the standard library:

from operator import add, mul, getitem

PipeChain(5).pipe(mul, 3).eval()
15
PipeChain(5).pipe(add, 3).eval()
8
PipeChain(["a", "b", "c"]).pipe(getitem, 1).eval()
'b'

Test Suite

Note, you will need poetry installed.

To run the test suite, use:

git clone https://github.com/multimeric/PipeChain.git
cd PipeChain
poetry install
poetry run pytest test/test.py
Owner
Michael Milton
Michael Milton
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022