This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

Overview

VarDACAE

This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Data Assimilation with just a few lines of code. It is the accompanying code to the paper here, published in Computer Methods in Applied Mechanics and Engineering.

Introduction

Data Assimilation (DA) is an uncertainty quantification technique used to reduce the error in predictions by combining forecasting data with observation of the state. The most common techniques for DA are Variational approaches and Kalman Filters.

In this work, we propose a method of using Autoencoders to model the Background error covariance matrix, to greatly reduce the computational cost of solving 3D Variational DA while increasing the quality of the Data Assimilation.

Data

The data used in this paper is owned by the Data Science Institute, Imperial College, London. If you do not have access to this data, please see the section below on training a model with your own data.

Installation

  1. Install vtk by navigating to this link and installing the version applicable to your system.

  2. Navigate to the base directory and run:

    pip install -e .
  3. Run pytest from the home directory to ensure correct installation.

Tests

From the project home directory run pytest.

Getting Started

To train and evaluate a Tucodec model on Fluidity data:

from VarDACAE import TrainAE, BatchDA
from VarDACAE.settings.models.CLIC import CLIC

model_kwargs = {"model_name": "Tucodec", "block_type": "NeXt", "Cstd": 64}

settings = CLIC(**model_kwargs)    # settings describing experimental setup
expdir = "experiments/expt1/"      # dir to save results data and models

trainer = TrainAE(settings, expdir, batch_sz=16)
model = trainer.train(num_epochs=150)   # this will take approximately 8 hrs on a K80

# evaluate DA on the test set:
results_df = BatchDA(settings, AEModel=model).run()

Settings Instance

The API is based around a monolithic settings object that is used to define all configuration parameters, from the model definition to the seed. This single point of truth is used so that, an experiment can be repeated exactly by simply loading a pickled settings object. All key classes like TrainAE and BatchDA require a settings object at initialisation.

Train a model on your own data

To train a model on your own 3D data you must do the following:

  • Override the default get_X(...) method in the GetData loader class:
from VarDACAE import GetData

class NewLoaderClass(GetData):
    def get_X(self, settings):
        "Arguments:
               settings: (A settings.Config class)
        returns:
            np.array of dimensions B x nx x ny x nz "

        # ... calculate / load or download X
        # For an example see VarDACAE.data.load.GetData.get_X"""
        return X
  • Create a new settings class that inherits from your desired model's settings class (e.g. VarDACAE.settings.models.CLIC.CLIC) and update the data dimensions:
from VarDACAE.settings.models.CLIC import CLIC

class NewConfig(CLIC):
    def __init__(self, CLIC_kwargs, opt_kwargs):
        super(CLIC, self).__init__(**CLIC_kwargs)
        self.n3d = (100, 200, 300)  # Define input domain size
                                    # This is used by ConvScheduler
        self.X_FP = "SET_IF_REQ_BY_get_X"
        # ... use opt_kwargs as desired

CLIC_kwargs =  {"model_name": "Tucodec", "block_type": "NeXt",
                "Cstd": 64, "loader": NewLoaderClass}
                # NOTE: do not initialize NewLoaderClass

settings = NewConfig(CLIC_kwargs, opt_kwargs)

This settings object can now be used to train a model with the TrainAE method as shown above.

Owner
Julian Mack
Data Scientist at Accelex
Julian Mack
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. StanĀ® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks

qgrid Qgrid is a Jupyter notebook widget which uses SlickGrid to render pandas DataFrames within a Jupyter notebook. This allows you to explore your D

Quantopian, Inc. 2.9k Jan 08, 2023
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022