AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

Overview

AptaMAT

Purpose

AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the comparison of the matrices representing the two secondary structures to analyze, assimilable to dotplots. The dot-bracket notation of the structure is converted in a half binary matrix showing width equal to structure's length. Each matrix case (i,j) is filled with '1' if the nucleotide in position i is paired with the nucleotide in position j, with '0' otherwise.

The differences between matrices is calculated by applying Manhattan distance on each point in the template matrix against all the points from the compared matrix. This calculation is repeated between compared matrix and template matrix to handle all the differences. Both calculation are then sum up and divided by the sum of all the points in both matrices.

Dependencies

AptaMat have been written in Python 3.8+

Two Python modules are needed :

These can be installed by typing in the command prompt either :

./setup

or

pip install numpy
pip install scipy

Use of Anaconda is highly recommended.

Usage

AptaMat is a flexible Python script which can take several arguments:

  • structures followed by secondary structures written in dotbracket format
  • files followed by path to formatted files containing one, or several secondary structures in dotbracket format

Both structures and files are independent functions in the script and cannot be called at the same time.

usage: AptaMAT.py [-h] [-structures STRUCTURES [STRUCTURES ...]] [-files FILES [FILES ...]] 

The structures argument must be a string formatted secondary structures. The first input structure is the template structure for the comparison. The following input are the compared structures. There are no input limitations. Quotes are necessary.

usage: AptaMat.py structures [-h] "struct_1" "struct_2" ["struct_n" ...]

The files argument must be a formatted file. Multiple files can be parsed. The first structure encountered during the parsing is used as the template structure. The others are the compared structures.

usage: AptaMat.py -files [-h] struct_file_1 [struct_file_n ...]

The input must be a text file, containing at least secondary structures, and accept additional information such as Title, Sequence or Structure index. If several files are provided, the function parses the files one by one and always takes the first structure encountered as the template structure. Files must be formatted as follows:

>5HRU
TCGATTGGATTGTGCCGGAAGTGCTGGCTCGA
--Template--
((((.........(((((.....)))))))))
--Compared--
.........(((.(((((.....))))).)))

Examples

structures function

First introducing a simple example with 2 structures:

AptaMat : 0.08 ">
$ AptaMat.py -structures "(((...)))" "((.....))"
 (((...)))
 ((.....))
> AptaMat : 0.08

Then, it is possible to input several structures:

AptaMat : 0.08 (((...))) .(.....). > AptaMat : 0.2 (((...))) (.......) > AptaMat : 0.3 ">
$ AptaMat.py -structures "(((...)))" "((.....))" ".(.....)." "(.......)"
 (((...)))
 ((.....))
> AptaMat : 0.08

 (((...)))
 .(.....).
> AptaMat : 0.2

 (((...)))
 (.......)
> AptaMat : 0.3

files function

Taking the above file example:

$ AptaMat.py -files example.fa
5HRU
Template - Compared
 ((((.........(((((.....)))))))))
 .........(((.(((((.....))))).)))
> AptaMat : 0.1134453781512605

Note

Compared structures need to have the same length as the Template structure.

For the moment, no features have been included to check whether the base pair is able to exist or not, according to literature. You must be careful about the sequence input and the base pairing associate.

The script accepts the extended dotbracket notation useful to compare pseudoknots or Tetrad. However, the resulting distance might not be accurate.

You might also like...
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

My first Python project is a simple Mad Libs program.
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Comments
  • Allow comparison with not folded secondary structure

    Allow comparison with not folded secondary structure

    User may want to perform quantitative analysis and attribute distance to non folded oligonucleotides against folded anyway for example in pipeline. Different solution can be considered:

    • Give a default distance value to unfolded vs folded structure (worst solution)
    • Distance must be equal to the maximum number of base pair observable : len(structrure)//2. Several issues could arise from this:
      • How to manage with enhancement #7 ? Take the largest ? Shortest ?
      • It would give abnormally high distance value and will remains constistent even though different structure folding are compared to the same unfolded structure. Considering our main advantage over others algorithm, failed to rank at this point is not good.
    • Assign Manhattan Distance for each point in matrix ( the one showing folding) the farthest theoretical + 1 in the structure. This may give a large distance between the two structures no matter the size and the + 1 prevent an equality one distance with an actually folded structure showing the same coordinate than the farthest theoretical point. Moreover, we can obtain different score when comparing different folding to the same unfolded structure.
    enhancement 
    opened by GitHuBinet 0
  • Different length support and optimal alignment

    Different length support and optimal alignment

    Allow different structure length alignment. This would surely needs an optimal structure alignment to make AptaMat distance the lowest for a shared motif. Maybe we should consider the missing bases in the score calculation.

    enhancement 
    opened by GitHuBinet 0
  • Is the algorithm time consuming ?

    Is the algorithm time consuming ?

    Considering the expected structure size (less than 100n) the calculation run quite fast. However, theoretically the calculation can takes time when the structure is larger with complexity around log(n^2). Possible improvement can be considered as this time complexity is linked with the double browsing of dotbracket input

    • [ ] Think about the possibility of improving this bracket search.
    • [ ] Study the .ct notation for ssNA secondary structure (see in ".ct notation" enhancement)
    • [x] #6
    • [ ] Test the algorithm with this new feature
    question 
    opened by GEC-git 0
  • G-quadruplex/pseudoknot comprehension

    G-quadruplex/pseudoknot comprehension

    Add features with G-quadruplex and pseudoknot comprehension. This kind of secondary structures requires extended dotbracket notation. https://www.tbi.univie.ac.at/RNA/ViennaRNA/doc/html/rna_structure_notations.html

    The '([{<' & string.ascii_uppercase is already included but some doubt remain about the comparison accuracy because no test have been done on this kind of secondary structure

    • [ ] Perform some try on Q-quadruplex & pseudoknots and conclude about comparison reliability. /!\ The complexity comes from the G-quadruplex structures. The tetrad can form base pair in many different way and some secondary structure notation can be similar. Here is an exemple of case with the same interacting Guanine GGTTGGTGTGGTTGG ([..[)...(]..]) ((..)(...)(..))
    • [x] #5
    enhancement invalid 
    opened by GEC-git 0
Releases(v0.9-pre-release)
  • v0.9-pre-release(Oct 28, 2022)

    Pre-release content

    https://github.com/GEC-git/AptaMat

    • Create LICENSE by @GEC-git in https://github.com/GEC-git/AptaMat/pull/2
    • main script AptaMat.py
    • README.MD edited and published
    • Beta AptaMat logo edited and published

    Contributors

    • @GEC-git contributed in https://github.com/GEC-git/AptaMat
    • @GitHuBinet contributed in https://github.com/GEC-git/AptaMat

    Full Changelog: https://github.com/GEC-git/AptaMat/commits/v0.9-pre-release

    Source code(tar.gz)
    Source code(zip)
Owner
GEC UTC
We are the "Genie Enzymatique et Cellulaire" CNRS UMR 7025 research unit.
GEC UTC
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
A columnar data container that can be compressed.

Unmaintained Package Notice Unfortunately, and due to lack of resources, the Blosc Development Team is unable to maintain this package anymore. During

944 Dec 09, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it

Battery Intelligence Lab 20 Sep 28, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
This is a python script to navigate and extract the FSD50K dataset

FSD50K navigator This is a script I use to navigate the sound dataset from FSK50K.

sweemeng 2 Nov 23, 2021
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021