simple way to build the declarative and destributed data pipelines with python

Overview

unipipeline

simple way to build the declarative and distributed data pipelines.

Why you should use it

  • Declarative strict config
  • Scaffolding
  • Fully typed
  • Python support 3.6+
  • Brokers support
    • kafka
    • rabbitmq
    • inmemory simple pubsub
  • Interruption handling = safe user code transactions
  • CLI

How to Install

$ pip3 install unipipeline

Example

# dag.yml
---

service:
  name: "example"
  echo_colors: true
  echo_level: error


external:
  service_name: {}


brokers:
  default_broker:
    import_template: "unipipeline.brokers.uni_memory_broker:UniMemoryBroker"

  ender_broker:
    import_template: "example.brokers.uni_log_broker:LogBroker"


messages:
  __default__:
    import_template: "example.messages.{{name}}:{{name|camel}}"

  input_message: {}

  inetermediate_message: {}

  ender_message: {}


cron:
  my_super_task:
    worker: my_super_cron_worker
    when: 0/1 * * * *

  my_mega_task:
    worker: my_super_cron_worker
    when: 0/2 * * * *

  my_puper_task:
    worker: my_super_cron_worker
    when: 0/3 * * * *


waitings:
  __default__:
    import_template: example.waitings.{{name}}_wating:{{name|camel}}Waiting

  common_db: {}


workers:
  __default__:
    import_template: "example.workers.{{name}}:{{name|camel}}"

  my_super_cron_worker:
    input_message: uni_cron_message

  input_worker:
    input_message: input_message
    waiting_for:
      - common_db

  intermediate_first_worker:
    input_message: inetermediate_message
    output_workers:
      - ender_second_worker
    waiting_for:
      - common_db

  intermediate_second_worker:
    input_message: inetermediate_message
    external: service_name
    output_workers:
      - ender_frist_worker

  ender_frist_worker:
    input_message: ender_message

  ender_second_worker:
    input_message: ender_message
    broker: ender_broker
    waiting_for:
      - common_db

Get Started

  1. create ./unipipeline.yml such as example above

  2. run cli command

unipipeline -f ./unipipeline.yml scaffold

It should create all structure of your workers, brokers and so on

  1. remove error raising from workers

  2. correct message structure for make more usefull

  3. correct broker connection (if need)

  4. run cli command to run your consumer

unipipeline -f ./unipipeline.yml consume input_worker

or with python

from unipipeline import Uni
u = Uni(f'./unipipeline.yml')
u.init_consumer_worker(f'input_worker')
u.initialize()
u.start_consuming()
  1. produce some message to the message broker by your self or with tools
unipipeline -f ./unipipeline.yml produce --worker input_worker --data='{"some": "prop"}'

or with python

# main.py
from unipipeline import Uni

u = Uni(f'./unipipeline.yml')
u.init_producer_worker(f'input_worker')
u.initialize()
u.send_to(f'input_worker', dict(some='prop'))

Definition

Service

service:
  name: some_name       # need for health-check file name
  echo_level: warning   # level of uni console logs (debug, info, warning, error)
  echo_colors: true     # show colors in console

External

external:
  some_name_of_external_service: {}
  • no props

  • it needs for declarative grouping the external workers with service

Worker

workers:
  __default__:                                        # each worker get this default props if defined
    retry_max_count: 10
    
  some_worker_name:
    retry_max_count: 3                                # just counter. message move to /dev/null if limit has reached 
    retry_delay_s: 1                                  # delay before retry
    topic: "{{name}}"                                 # template string
    error_payload_topic: "{{topic}}__error__payload"  # template string
    error_topic: "{{topic}}__error"                   # template string
    broker: "default_broker"                          # broker name. reference to message transport 
    external: null                                    # name of external service. reference in this config file 
    ack_after_success: true                           # automatic ack after process message
    waiting_for:                                      # list of references
      - some_waiting_name                             # name of block. this worker must wait for connection of this external service if need
    output_workers:                                   # list of references
      - some_other_worker_name                        # allow worker sending messages to this worker
    
    inport_template: "some.module.hierarchy.to.worker.{{name}}:{{name|camel}}OfClass"   # required module and classname for import

    input_message: "name_of_message"                  # required reference of input message type 

Waiting

waitings:
  some_blocked_service_name:
    retry_max_count: 3                         # the same semantic as worker.retry_max_count
    retry_delay_s: 10                          # the same semantic as worker.retry_delay_s
    import_template: "some.module:SomeClass"   # required. the same semantic as worker.import_template

Broker

brokers:
  some_name_of_broker:
    retry_max_count: 3                         # the same semantic as worker.retry_max_count
    retry_delay_s: 10                          # the same semantic as worker.retry_delay_s
    content_type: application/json             # content type
    compression: null                          # compression (null, application/x-gzip, application/x-bz2, application/x-lzma)
    import_template: "some.module:SomeClass"   # required. the same semantic as worker.import_template

Message

messages:
  name_of_message:
    import_template: "some.module:SomeClass"   # required. the same semantic as worker.import_template

build in messages:

messages:
  uni_cron_message:
    import_template: unipipeline.messages.uni_cron_message:UniCronMessage

CLI

unipipeline

usage: unipipeline --help

UNIPIPELINE: simple way to build the declarative and distributed data pipelines. this is cli tool for unipipeline

positional arguments:
  {check,scaffold,init,consume,cron,produce}
                        sub-commands
    check               check loading of all modules
    scaffold            create all modules and classes if it is absent. no args
    init                initialize broker topics for workers
    consume             start consuming workers. connect to brokers and waiting for messages
    cron                start cron jobs, That defined in config file
    produce             publish message to broker. send it to worker

optional arguments:
  -h, --help            show this help message and exit
  --config-file CONFIG_FILE, -f CONFIG_FILE
                        path to unipipeline config file (default: ./unipipeline.yml)
  --verbose [VERBOSE]   verbose output (default: false)

unipipeline check

usage: 
    unipipeline -f ./unipipeline.yml check
    unipipeline -f ./unipipeline.yml --verbose=yes check

check loading of all modules

optional arguments:
  -h, --help  show this help message and exit

unipipeline init

usage: 
    unipipeline -f ./unipipeline.yml init
    unipipeline -f ./unipipeline.yml --verbose=yes init
    unipipeline -f ./unipipeline.yml --verbose=yes init --workers some_worker_name_01 some_worker_name_02

initialize broker topics for workers

optional arguments:
  -h, --help            show this help message and exit
  --workers INIT_WORKERS [INIT_WORKERS ...], -w INIT_WORKERS [INIT_WORKERS ...]
                        workers list for initialization (default: [])

unipipeline scaffold

usage: 
    unipipeline -f ./unipipeline.yml scaffold
    unipipeline -f ./unipipeline.yml --verbose=yes scaffold

create all modules and classes if it is absent. no args

optional arguments:
  -h, --help  show this help message and exit

unipipeline consume

usage: 
    unipipeline -f ./unipipeline.yml consume
    unipipeline -f ./unipipeline.yml --verbose=yes consume
    unipipeline -f ./unipipeline.yml consume --workers some_worker_name_01 some_worker_name_02
    unipipeline -f ./unipipeline.yml --verbose=yes consume --workers some_worker_name_01 some_worker_name_02

start consuming workers. connect to brokers and waiting for messages

optional arguments:
  -h, --help            show this help message and exit
  --workers CONSUME_WORKERS [CONSUME_WORKERS ...], -w CONSUME_WORKERS [CONSUME_WORKERS ...]
                        worker list for consuming

unipipeline produce

usage: 
    unipipeline -f ./unipipeline.yml produce --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}
    unipipeline -f ./unipipeline.yml --verbose=yes produce --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}
    unipipeline -f ./unipipeline.yml produce --alone --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}
    unipipeline -f ./unipipeline.yml --verbose=yes produce --alone --worker some_worker_name_01 --data {"some": "json", "value": "for worker"}

publish message to broker. send it to worker

optional arguments:
  -h, --help            show this help message and exit
  --alone [PRODUCE_ALONE], -a [PRODUCE_ALONE]
                        message will be sent only if topic is empty
  --worker PRODUCE_WORKER, -w PRODUCE_WORKER
                        worker recipient
  --data PRODUCE_DATA, -d PRODUCE_DATA
                        data for sending

unipipeline cron

usage: 
    unipipeline -f ./unipipeline.yml cron
    unipipeline -f ./unipipeline.yml --verbose=yes cron

start cron jobs, That defined in config file

optional arguments:
  -h, --help  show this help message and exit

Contributing

TODO LIST

  1. RPC Gateways: http, tcp, udp
  2. Close/Exit uni by call method
  3. Async producer
  4. Common Error Handling
  5. Async get_answer
  6. Server of Message layout
  7. Prometheus api
  8. req/res Sdk
  9. request tasks result registry
  10. Async consumer
  11. Async by default
  12. Multi-threading start with run-groups
Owner
aliaksandr-master
aliaksandr-master
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022