INFO-H515 - Big Data Scalable Analytics

Overview

INFO-H515 - Big Data Scalable Analytics

Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group

Exercise classes - Overview

This repository contains the material for the exercise classes of the ULB/VUB Big Data Analytics master course (first semester 2022) - Advanced analytics part.

These hands-on sessions provide:

  • Session 1 : An introduction to Spark and its Machine Learning (ML) library. The case study for the first session is a churn prediction problem: How to predict which customers will quit a subscription to a given service? The session covers the basics for loading and formatting a dataset for training an ML algorithm using Spark ML library, and illustrates the use of different Spark ML algorithms and accuracy metrics to address the prediction problem.

  • Sessions 2 and 4: An in-depth coverage of the use of the Map/Reduce programming model for distributing machine learning algorithms, and their implementation in Spark. Sessions 2, 3, and 4 cover, respectively, the Map/Reduce implementations from scratch of

    • Session 2: Linear regression (ordinary least squares and stochastic gradient descent). The algorithms are applied on an artificial dataset, and illustrate the numpy and Map/Reduce implementations for OLS and SGD.
    • Session 3: Streaming analytics with Recursive Least Squares and model racing. The algorithms are implemented using Spark Streaming, on a data stream coming from a Kafka broker. The RLS approach is then compared with established ML approaches.
    • Session 4: Recommender system with alternating least squares, using as a case study a movie recommendation problem.

    After detailing the Map/Reduce techniques for solving these problems, each session ends with an example on how to use the corresponding algorithm with Spark ML, and get insights into how Spark distributes the task using the Spark user interface.

  • Session 5: An overview of a deep learning framework (Keras/Tensorflow), and its use for image classification using convolutional neural networks.

The material is available as a set of Jupyter notebooks.

Clone this repository

From the command line, use

git clone https://github.com/Yannael/BigDataAnalytics_INFOH515

If using the course cluster, you will have to use SFTP to send this folder to the cluster.

Environment setup

These notebooks rely on different technologies and frameworks for Big Data and machine learning (Spark, Kafka, Keras and Tensorflow). We summarize below different ways to have your environment set up.

Local setup (Linux)

Python

Install Anaconda Python (see https://www.anaconda.com/download/, choose the latest Linux distribution (Python 3.9 at the writing of these instructions).

Make sure the binaries are in your PATH. Anaconda installer proposes to add them at the end of the installation process. If you decline, you may later add

export ANACONDA_HOME=where_you_installed_anaconda
export PATH=$ANACONDA_HOME/bin:$PATH

to your .bash_rc.

Spark

Download from https://spark.apache.org/downloads.html (Use version 3.2.0 (October 2020), prebuilt for Apache Hadoop 3.3). Untar and add executables to your PATH, as well as Python libraries to PYTHONPATH

export SPARK_HOME=where_you_untarred_spark
export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PYTHONPATH="$SPARK_HOME/python/lib/pyspark.zip:$SPARK_HOME/python/lib/py4j-0.10.4-src.zip"

Kafka

Download from https://kafka.apache.org/downloads, and untar archive. Start with

export KAFKA_HOME=where_you_untarred_kafka
nohup $KAFKA_HOME/bin/zookeeper-server-start.sh $KAFKA_HOME/config/zookeeper.properties  > $HOME/zookeeper.log 2>&1 &
nohup $KAFKA_HOME/bin/kafka-server-start.sh $KAFKA_HOME/config/server.properties > $HOME/kafka.log 2>&1 &

Keras and tensorflow

Install with pip

pip install tensorflow
pip install keras

Notebook

The notebook is part of Anaconda. Start Jupyter notebook with

jupyter notebook

and open in the browser at 127.0.0.1:8888

Docker

In order to ease the setting-up of the environment, we also prepared a Docker container that provides a ready-to-use environment. See docker folder for installing Docker, downloading the course container, and get started with it.

Note that the Dockerfile script essentially follows the steps for the 'local' installation.

Check if your setup is working

After setting up your environment (either in a Docker or your own machine) you should be able to run the notebook and scripts in Check_Setup

Spark - Test with Check_Setup notebook

  • Open notebook from Check_Setup/Demo_RDD_local.ipynb
  • Run all cells

Follow instructions in Check_Setup/Demo_RDD_local.ipynb to have access to Spark UI.

Kafka - Test with Check_Setup scripts

  1. Run the script Check_Setup/0_kafka_startup.sh to start Zookeeper and Kafka.
  2. Run the script Check_Setup/1_kafka_test_topic.sh to check whether a topic can be created and deleted successfully.
  3. In two separate terminals:
    1. Start first Check_Setup/2_kafka_test_sender.sh, and try sending some messages, by entering some text and concluding the message with the Enter key.
    2. Start first Check_Setup/3_kafka_test_receiver.sh, and check that the messages sent by the sender are correctly received.

FAQ

Owner
Yann-Aël Le Borgne
Postdoc @ Machine Learning Group - Computer Science Department - Université Libre de Bruxelles - Belgium
Yann-Aël Le Borgne
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Functional tensors for probabilistic programming

Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.

208 Dec 29, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022