Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Overview

Overview

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are statistical models that allow these properties to be simulated (Joe 2014). As such, copula generated data have shown potential to improve the generalization of machine learning (ML) emulators (Meyer et al. 2021) or anonymize real-data datasets (Patki et al. 2016).

Synthia is an open source Python package to model univariate and multivariate data, parameterize data using empirical and parametric methods, and manipulate marginal distributions. It is designed to enable scientists and practitioners to handle labelled multivariate data typical of computational sciences. For example, given some vertical profiles of atmospheric temperature, we can use Synthia to generate new but statistically similar profiles in just three lines of code (Table 1).

Synthia supports three methods of multivariate data generation through: (i) fPCA, (ii) parametric (Gaussian) copula, and (iii) vine copula models for continuous (all), discrete (vine), and categorical (vine) variables. It has a simple and succinct API to natively handle xarray's labelled arrays and datasets. It uses a pure Python implementation for fPCA and Gaussian copula, and relies on the fast and well tested C++ library vinecopulib through pyvinecopulib's bindings for fast and efficient computation of vines. For more information, please see the website at https://dmey.github.io/synthia.

Table 1. Example application of Gaussian and fPCA classes in Synthia. These are used to generate random profiles of atmospheric temperature similar to those included in the source data. The xarray dataset structure is maintained and returned by Synthia.

Source Synthetic with Gaussian Copula Synthetic with fPCA
ds = syn.util.load_dataset() g = syn.CopulaDataGenerator() g = syn.fPCADataGenerator()
g.fit(ds, syn.GaussianCopula()) g.fit(ds)
g.generate(n_samples=500) g.generate(n_samples=500)
Source Gaussian fPCA

Documentation

For installation instructions, getting started guides and tutorials, background information, and API reference summaries, please see the website.

How to cite

If you are using Synthia, please cite the following two papers using their respective Digital Object Identifiers (DOIs). Citations may be generated automatically using Crosscite's DOI Citation Formatter or from the BibTeX entries below.

Synthia Software Software Application
DOI: 10.21105/joss.02863 DOI: 10.5194/gmd-14-5205-2021
@article{Meyer_and_Nagler_2021,
  doi = {10.21105/joss.02863},
  url = {https://doi.org/10.21105/joss.02863},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {65},
  pages = {2863},
  author = {David Meyer and Thomas Nagler},
  title = {Synthia: multidimensional synthetic data generation in Python},
  journal = {Journal of Open Source Software}
}

@article{Meyer_and_Nagler_and_Hogan_2021,
  doi = {10.5194/gmd-14-5205-2021},
  url = {https://doi.org/10.5194/gmd-14-5205-2021},
  year = {2021},
  publisher = {Copernicus {GmbH}},
  volume = {14},
  number = {8},
  pages = {5205--5215},
  author = {David Meyer and Thomas Nagler and Robin J. Hogan},
  title = {Copula-based synthetic data augmentation for machine-learning emulators},
  journal = {Geoscientific Model Development}
}

If needed, you may also cite the specific software version with its corresponding Zendo DOI.

Contributing

If you are looking to contribute, please read our Contributors' guide for details.

Development notes

If you would like to know more about specific development guidelines, testing and deployment, please refer to our development notes.

Copyright and license

Copyright 2020 D. Meyer and T. Nagler. Licensed under MIT.

Acknowledgements

Special thanks to @letmaik for his suggestions and contributions to the project.

Comments
  • Explain how to run the test suite

    Explain how to run the test suite

    Describe the bug There is a test suite, but the documentation does not explain how to run it.

    Here is what works for me:

    1. Install pytest.
    2. Clone the source repository.
    3. Run pytest in the root directory of the repository.
    opened by khinsen 7
  • Review: Copula distribution usage and examples

    Review: Copula distribution usage and examples

    Your package offers support for simulating vine copulas. However, I don't see examples demonstrating how to simulate data from a vine copula given desired conditional dependency requirements.

    Is this possible with the current API? If not, how would I use the vine copula generator to achieve this?

    Otherwise, can examples show the difference between simulating Gaussian and vine copulas? I only see examples for the Gaussian copula.

    opened by mnarayan 5
  • fPCA documentation

    fPCA documentation

    Describe the bug

    The documentation page on fPCA says:

    PCA can be used to generate synthetic data for the high-dimensional vector $X$. For every instance $X_i$ in the data set, we compute the principal component scores $a_{i, 1}, \dots, a_{i, K}$. Because the principal components $v_1, \dots, v_K$ are orthogonal, the scores are necessarily uncorrelated and we may treat them as independent.
    

    The claim that "because the principal components $v_1, \dots, v_K$ are orthogonal, the scores are necessarily uncorrelated" looks wrong to me. These scores are projections of the $X_i$ onto the elements of an orthonormal basis. That doesn't make them uncorrelated. There are lots of orthonormal bases one can project on, and for most of them the projections are not uncorrelated. You need some property of the distribution of $X$ to derive a zero correlation, for example a Gaussian distribution, for which the PCA basis yields approximately uncorrelated projections.

    opened by khinsen 3
  • Review: Clarify API

    Review: Clarify API

    It would be helpful to add/explain what the different classes do Data Generators, Parametrizer, Transformers somewhere in the introduction or usage component of the documentation. Explain the different classes and what each is supposed to do. If it is similar to or inspired by well-known API of a different package, please point to it.

    I think generators and transformers are obvious but I only sort of understand Parametrizers. It is also confusing in the sense that people might think this has something to do with parametric distributions when you mean it to be something different.

    Is this API for Parametrizers inspired by some convention elsewhere? If so it would be helpful to point to that. For instance, the generators are very similar to statsmodel generators.

    opened by mnarayan 2
  • Small error in docs

    Small error in docs

    Hi, just letting you know I noticed a small error in the documentation.

    At the bottom of this page https://dmey.github.io/synthia/examples/fpca.html

    The error is in line [6] of the code, under "Plot the results".

    You have: plot_profiles(ds_true, 'temperature_fl')

    But I believe it should be: plot_profiles(ds_synth, 'temperature_fl')

    you want to plot results, not the original here.

    Cheers & thanks for the cool project!

    opened by BigTuna08 1
  • Review: Comparisons to other common packages

    Review: Comparisons to other common packages

    What are other packages people might use to simulate data (e.g. statsmodels comes to mind) and how is this package different? Your package supports generating data for multivariate copula distributions and via fPCA. I understand what this entails but I think this could use further elaboration.

    This package supports nonparametric distributions much more than the typical parametric data generators found in common packages and it would be useful to highlight these explicitly.

    opened by mnarayan 1
  • Support categorical data for pyvinecopulib

    Support categorical data for pyvinecopulib

    During fitting, category values are reindexed as integers starting from 0 and transformed to one-hot vectors. The opposite during generation. Any data type works for categories, including strings.

    opened by letmaik 0
  • Add support for categorical data

    Add support for categorical data

    We can treat categorical data as discrete but first we need to pre-process categorical values by one hot encoding to remove the order. Re API we can change the current version from

    # Assuming  an xarray datasets ds with X1 discrete and and X2 categorical 
    generator.fit(ds, copula=syn.VineCopula(controls=ctrl), is_discrete={'X1': True, 'X2': False})
    

    to something like

    with X3 continuous 
    g.fit(ds, copula=syn.VineCopula(controls=ctrl), types={'X1': 'disc', 'X2': 'cat', 'X3': 'cont'})
    
    opened by dmey 0
  • Add support for handling discrete quantities

    Add support for handling discrete quantities

    Introduces the option to specify and model discrete quantities as follows:

    # Assuming  an xarray datasets ds with X1 discrete and and X2 continuous 
    generator.fit(ds, copula=syn.VineCopula(controls=ctrl), is_discrete={'X1': True, 'X2': False})
    

    This option is only supported for vine copulas

    opened by dmey 0
Releases(1.1.0)
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
PyPDC is a Python package for calculating asymptotic Partial Directed Coherence estimations for brain connectivity analysis.

Python asymptotic Partial Directed Coherence and Directed Coherence estimation package for brain connectivity analysis. Free software: MIT license Doc

Heitor Baldo 3 Nov 26, 2022
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
BIGDATA SIMULATION ONE PIECE WORLD CENSUS

ONE PIECE is a Japanese manga of great international success. The story turns inhabited in a fictional world, tells the adventures of a young man whose body gained rubber properties after accidentall

Maycon Cypriano 3 Jun 30, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023