Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Overview

Overview

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are statistical models that allow these properties to be simulated (Joe 2014). As such, copula generated data have shown potential to improve the generalization of machine learning (ML) emulators (Meyer et al. 2021) or anonymize real-data datasets (Patki et al. 2016).

Synthia is an open source Python package to model univariate and multivariate data, parameterize data using empirical and parametric methods, and manipulate marginal distributions. It is designed to enable scientists and practitioners to handle labelled multivariate data typical of computational sciences. For example, given some vertical profiles of atmospheric temperature, we can use Synthia to generate new but statistically similar profiles in just three lines of code (Table 1).

Synthia supports three methods of multivariate data generation through: (i) fPCA, (ii) parametric (Gaussian) copula, and (iii) vine copula models for continuous (all), discrete (vine), and categorical (vine) variables. It has a simple and succinct API to natively handle xarray's labelled arrays and datasets. It uses a pure Python implementation for fPCA and Gaussian copula, and relies on the fast and well tested C++ library vinecopulib through pyvinecopulib's bindings for fast and efficient computation of vines. For more information, please see the website at https://dmey.github.io/synthia.

Table 1. Example application of Gaussian and fPCA classes in Synthia. These are used to generate random profiles of atmospheric temperature similar to those included in the source data. The xarray dataset structure is maintained and returned by Synthia.

Source Synthetic with Gaussian Copula Synthetic with fPCA
ds = syn.util.load_dataset() g = syn.CopulaDataGenerator() g = syn.fPCADataGenerator()
g.fit(ds, syn.GaussianCopula()) g.fit(ds)
g.generate(n_samples=500) g.generate(n_samples=500)
Source Gaussian fPCA

Documentation

For installation instructions, getting started guides and tutorials, background information, and API reference summaries, please see the website.

How to cite

If you are using Synthia, please cite the following two papers using their respective Digital Object Identifiers (DOIs). Citations may be generated automatically using Crosscite's DOI Citation Formatter or from the BibTeX entries below.

Synthia Software Software Application
DOI: 10.21105/joss.02863 DOI: 10.5194/gmd-14-5205-2021
@article{Meyer_and_Nagler_2021,
  doi = {10.21105/joss.02863},
  url = {https://doi.org/10.21105/joss.02863},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {65},
  pages = {2863},
  author = {David Meyer and Thomas Nagler},
  title = {Synthia: multidimensional synthetic data generation in Python},
  journal = {Journal of Open Source Software}
}

@article{Meyer_and_Nagler_and_Hogan_2021,
  doi = {10.5194/gmd-14-5205-2021},
  url = {https://doi.org/10.5194/gmd-14-5205-2021},
  year = {2021},
  publisher = {Copernicus {GmbH}},
  volume = {14},
  number = {8},
  pages = {5205--5215},
  author = {David Meyer and Thomas Nagler and Robin J. Hogan},
  title = {Copula-based synthetic data augmentation for machine-learning emulators},
  journal = {Geoscientific Model Development}
}

If needed, you may also cite the specific software version with its corresponding Zendo DOI.

Contributing

If you are looking to contribute, please read our Contributors' guide for details.

Development notes

If you would like to know more about specific development guidelines, testing and deployment, please refer to our development notes.

Copyright and license

Copyright 2020 D. Meyer and T. Nagler. Licensed under MIT.

Acknowledgements

Special thanks to @letmaik for his suggestions and contributions to the project.

Comments
  • Explain how to run the test suite

    Explain how to run the test suite

    Describe the bug There is a test suite, but the documentation does not explain how to run it.

    Here is what works for me:

    1. Install pytest.
    2. Clone the source repository.
    3. Run pytest in the root directory of the repository.
    opened by khinsen 7
  • Review: Copula distribution usage and examples

    Review: Copula distribution usage and examples

    Your package offers support for simulating vine copulas. However, I don't see examples demonstrating how to simulate data from a vine copula given desired conditional dependency requirements.

    Is this possible with the current API? If not, how would I use the vine copula generator to achieve this?

    Otherwise, can examples show the difference between simulating Gaussian and vine copulas? I only see examples for the Gaussian copula.

    opened by mnarayan 5
  • fPCA documentation

    fPCA documentation

    Describe the bug

    The documentation page on fPCA says:

    PCA can be used to generate synthetic data for the high-dimensional vector $X$. For every instance $X_i$ in the data set, we compute the principal component scores $a_{i, 1}, \dots, a_{i, K}$. Because the principal components $v_1, \dots, v_K$ are orthogonal, the scores are necessarily uncorrelated and we may treat them as independent.
    

    The claim that "because the principal components $v_1, \dots, v_K$ are orthogonal, the scores are necessarily uncorrelated" looks wrong to me. These scores are projections of the $X_i$ onto the elements of an orthonormal basis. That doesn't make them uncorrelated. There are lots of orthonormal bases one can project on, and for most of them the projections are not uncorrelated. You need some property of the distribution of $X$ to derive a zero correlation, for example a Gaussian distribution, for which the PCA basis yields approximately uncorrelated projections.

    opened by khinsen 3
  • Review: Clarify API

    Review: Clarify API

    It would be helpful to add/explain what the different classes do Data Generators, Parametrizer, Transformers somewhere in the introduction or usage component of the documentation. Explain the different classes and what each is supposed to do. If it is similar to or inspired by well-known API of a different package, please point to it.

    I think generators and transformers are obvious but I only sort of understand Parametrizers. It is also confusing in the sense that people might think this has something to do with parametric distributions when you mean it to be something different.

    Is this API for Parametrizers inspired by some convention elsewhere? If so it would be helpful to point to that. For instance, the generators are very similar to statsmodel generators.

    opened by mnarayan 2
  • Small error in docs

    Small error in docs

    Hi, just letting you know I noticed a small error in the documentation.

    At the bottom of this page https://dmey.github.io/synthia/examples/fpca.html

    The error is in line [6] of the code, under "Plot the results".

    You have: plot_profiles(ds_true, 'temperature_fl')

    But I believe it should be: plot_profiles(ds_synth, 'temperature_fl')

    you want to plot results, not the original here.

    Cheers & thanks for the cool project!

    opened by BigTuna08 1
  • Review: Comparisons to other common packages

    Review: Comparisons to other common packages

    What are other packages people might use to simulate data (e.g. statsmodels comes to mind) and how is this package different? Your package supports generating data for multivariate copula distributions and via fPCA. I understand what this entails but I think this could use further elaboration.

    This package supports nonparametric distributions much more than the typical parametric data generators found in common packages and it would be useful to highlight these explicitly.

    opened by mnarayan 1
  • Support categorical data for pyvinecopulib

    Support categorical data for pyvinecopulib

    During fitting, category values are reindexed as integers starting from 0 and transformed to one-hot vectors. The opposite during generation. Any data type works for categories, including strings.

    opened by letmaik 0
  • Add support for categorical data

    Add support for categorical data

    We can treat categorical data as discrete but first we need to pre-process categorical values by one hot encoding to remove the order. Re API we can change the current version from

    # Assuming  an xarray datasets ds with X1 discrete and and X2 categorical 
    generator.fit(ds, copula=syn.VineCopula(controls=ctrl), is_discrete={'X1': True, 'X2': False})
    

    to something like

    with X3 continuous 
    g.fit(ds, copula=syn.VineCopula(controls=ctrl), types={'X1': 'disc', 'X2': 'cat', 'X3': 'cont'})
    
    opened by dmey 0
  • Add support for handling discrete quantities

    Add support for handling discrete quantities

    Introduces the option to specify and model discrete quantities as follows:

    # Assuming  an xarray datasets ds with X1 discrete and and X2 continuous 
    generator.fit(ds, copula=syn.VineCopula(controls=ctrl), is_discrete={'X1': True, 'X2': False})
    

    This option is only supported for vine copulas

    opened by dmey 0
Releases(1.1.0)
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

Nguyễn Quang Huy 5 Sep 28, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Python reader for Linked Data in HDF5 files

Linked Data are becoming more popular for user-created metadata in HDF5 files.

The HDF Group 8 May 17, 2022
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

WhiteBox 3 Oct 03, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023