Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Overview

Overview

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are statistical models that allow these properties to be simulated (Joe 2014). As such, copula generated data have shown potential to improve the generalization of machine learning (ML) emulators (Meyer et al. 2021) or anonymize real-data datasets (Patki et al. 2016).

Synthia is an open source Python package to model univariate and multivariate data, parameterize data using empirical and parametric methods, and manipulate marginal distributions. It is designed to enable scientists and practitioners to handle labelled multivariate data typical of computational sciences. For example, given some vertical profiles of atmospheric temperature, we can use Synthia to generate new but statistically similar profiles in just three lines of code (Table 1).

Synthia supports three methods of multivariate data generation through: (i) fPCA, (ii) parametric (Gaussian) copula, and (iii) vine copula models for continuous (all), discrete (vine), and categorical (vine) variables. It has a simple and succinct API to natively handle xarray's labelled arrays and datasets. It uses a pure Python implementation for fPCA and Gaussian copula, and relies on the fast and well tested C++ library vinecopulib through pyvinecopulib's bindings for fast and efficient computation of vines. For more information, please see the website at https://dmey.github.io/synthia.

Table 1. Example application of Gaussian and fPCA classes in Synthia. These are used to generate random profiles of atmospheric temperature similar to those included in the source data. The xarray dataset structure is maintained and returned by Synthia.

Source Synthetic with Gaussian Copula Synthetic with fPCA
ds = syn.util.load_dataset() g = syn.CopulaDataGenerator() g = syn.fPCADataGenerator()
g.fit(ds, syn.GaussianCopula()) g.fit(ds)
g.generate(n_samples=500) g.generate(n_samples=500)
Source Gaussian fPCA

Documentation

For installation instructions, getting started guides and tutorials, background information, and API reference summaries, please see the website.

How to cite

If you are using Synthia, please cite the following two papers using their respective Digital Object Identifiers (DOIs). Citations may be generated automatically using Crosscite's DOI Citation Formatter or from the BibTeX entries below.

Synthia Software Software Application
DOI: 10.21105/joss.02863 DOI: 10.5194/gmd-14-5205-2021
@article{Meyer_and_Nagler_2021,
  doi = {10.21105/joss.02863},
  url = {https://doi.org/10.21105/joss.02863},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {65},
  pages = {2863},
  author = {David Meyer and Thomas Nagler},
  title = {Synthia: multidimensional synthetic data generation in Python},
  journal = {Journal of Open Source Software}
}

@article{Meyer_and_Nagler_and_Hogan_2021,
  doi = {10.5194/gmd-14-5205-2021},
  url = {https://doi.org/10.5194/gmd-14-5205-2021},
  year = {2021},
  publisher = {Copernicus {GmbH}},
  volume = {14},
  number = {8},
  pages = {5205--5215},
  author = {David Meyer and Thomas Nagler and Robin J. Hogan},
  title = {Copula-based synthetic data augmentation for machine-learning emulators},
  journal = {Geoscientific Model Development}
}

If needed, you may also cite the specific software version with its corresponding Zendo DOI.

Contributing

If you are looking to contribute, please read our Contributors' guide for details.

Development notes

If you would like to know more about specific development guidelines, testing and deployment, please refer to our development notes.

Copyright and license

Copyright 2020 D. Meyer and T. Nagler. Licensed under MIT.

Acknowledgements

Special thanks to @letmaik for his suggestions and contributions to the project.

Comments
  • Explain how to run the test suite

    Explain how to run the test suite

    Describe the bug There is a test suite, but the documentation does not explain how to run it.

    Here is what works for me:

    1. Install pytest.
    2. Clone the source repository.
    3. Run pytest in the root directory of the repository.
    opened by khinsen 7
  • Review: Copula distribution usage and examples

    Review: Copula distribution usage and examples

    Your package offers support for simulating vine copulas. However, I don't see examples demonstrating how to simulate data from a vine copula given desired conditional dependency requirements.

    Is this possible with the current API? If not, how would I use the vine copula generator to achieve this?

    Otherwise, can examples show the difference between simulating Gaussian and vine copulas? I only see examples for the Gaussian copula.

    opened by mnarayan 5
  • fPCA documentation

    fPCA documentation

    Describe the bug

    The documentation page on fPCA says:

    PCA can be used to generate synthetic data for the high-dimensional vector $X$. For every instance $X_i$ in the data set, we compute the principal component scores $a_{i, 1}, \dots, a_{i, K}$. Because the principal components $v_1, \dots, v_K$ are orthogonal, the scores are necessarily uncorrelated and we may treat them as independent.
    

    The claim that "because the principal components $v_1, \dots, v_K$ are orthogonal, the scores are necessarily uncorrelated" looks wrong to me. These scores are projections of the $X_i$ onto the elements of an orthonormal basis. That doesn't make them uncorrelated. There are lots of orthonormal bases one can project on, and for most of them the projections are not uncorrelated. You need some property of the distribution of $X$ to derive a zero correlation, for example a Gaussian distribution, for which the PCA basis yields approximately uncorrelated projections.

    opened by khinsen 3
  • Review: Clarify API

    Review: Clarify API

    It would be helpful to add/explain what the different classes do Data Generators, Parametrizer, Transformers somewhere in the introduction or usage component of the documentation. Explain the different classes and what each is supposed to do. If it is similar to or inspired by well-known API of a different package, please point to it.

    I think generators and transformers are obvious but I only sort of understand Parametrizers. It is also confusing in the sense that people might think this has something to do with parametric distributions when you mean it to be something different.

    Is this API for Parametrizers inspired by some convention elsewhere? If so it would be helpful to point to that. For instance, the generators are very similar to statsmodel generators.

    opened by mnarayan 2
  • Small error in docs

    Small error in docs

    Hi, just letting you know I noticed a small error in the documentation.

    At the bottom of this page https://dmey.github.io/synthia/examples/fpca.html

    The error is in line [6] of the code, under "Plot the results".

    You have: plot_profiles(ds_true, 'temperature_fl')

    But I believe it should be: plot_profiles(ds_synth, 'temperature_fl')

    you want to plot results, not the original here.

    Cheers & thanks for the cool project!

    opened by BigTuna08 1
  • Review: Comparisons to other common packages

    Review: Comparisons to other common packages

    What are other packages people might use to simulate data (e.g. statsmodels comes to mind) and how is this package different? Your package supports generating data for multivariate copula distributions and via fPCA. I understand what this entails but I think this could use further elaboration.

    This package supports nonparametric distributions much more than the typical parametric data generators found in common packages and it would be useful to highlight these explicitly.

    opened by mnarayan 1
  • Support categorical data for pyvinecopulib

    Support categorical data for pyvinecopulib

    During fitting, category values are reindexed as integers starting from 0 and transformed to one-hot vectors. The opposite during generation. Any data type works for categories, including strings.

    opened by letmaik 0
  • Add support for categorical data

    Add support for categorical data

    We can treat categorical data as discrete but first we need to pre-process categorical values by one hot encoding to remove the order. Re API we can change the current version from

    # Assuming  an xarray datasets ds with X1 discrete and and X2 categorical 
    generator.fit(ds, copula=syn.VineCopula(controls=ctrl), is_discrete={'X1': True, 'X2': False})
    

    to something like

    with X3 continuous 
    g.fit(ds, copula=syn.VineCopula(controls=ctrl), types={'X1': 'disc', 'X2': 'cat', 'X3': 'cont'})
    
    opened by dmey 0
  • Add support for handling discrete quantities

    Add support for handling discrete quantities

    Introduces the option to specify and model discrete quantities as follows:

    # Assuming  an xarray datasets ds with X1 discrete and and X2 continuous 
    generator.fit(ds, copula=syn.VineCopula(controls=ctrl), is_discrete={'X1': True, 'X2': False})
    

    This option is only supported for vine copulas

    opened by dmey 0
Releases(1.1.0)
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
This repository contains some analysis of possible nerdle answers

Nerdle Analysis https://nerdlegame.com/ This repository contains some analysis of possible nerdle answers. Here's a quick overview: nerdle.py contains

0 Dec 16, 2022
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021