PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

Overview

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra

The purpose of this project is to demonstrate a structured streaming pipeline with Apache Spark. The process consists of given steps:

  1. Installation Process
  2. Prepare a robotic simulation environment to generate data to feed into the Kafka.
  3. Prepare Kafka and Zookeeper environment to store discrete data.
  4. Prepare Cassandra environment to store analyzed data.
  5. Prepare Apache Spark structured streaming pipeline, integrate with Kafka and Cassandra.
  6. Result

0. Installation Processes

You are able to install all required components to realize this project using the given steps.

Installation of ROS and Turtlebot3

We won't address the whole installation process of ROS and Turtlebot3 but you can access all required info from ROS & Turtlebot3 Installation.

After all installations are completed, you can demo our robotic environment using the given commands:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

You should see a view like the one given below.

Installation of Kafka and Zookeeper

We won't address the whole installation process of Kafka and Zookeeper but you can access all required info from Kafka & Zookeeper Installation.

After all installations are completed, you can demo Kafka using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "demo" topic
bin/kafka-topics.sh --create --topic demo --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Once you create "demo" topic, you can run kafka-demo/producer.py and kafka-demo/consumer.py respectively to check your setup.

If you haven't installed kafka-python, use the given command and then run given files.

pip install kafka-python
  • producer.py
import time,json,random
from datetime import datetime
from data_generator import generate_message
from kafka import KafkaProducer

def serializer(message):
    return json.dumps(message).encode("utf-8")
    
producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=serializer
)

if __name__=="__main__":
    while True:
        dummy_messages=generate_message()
        print(f"Producing message {datetime.now()} | Message = {str(dummy_messages)}")
        producer.send("demo",dummy_messages)
        time.sleep(2)
  • consumer.py
import json
from kafka import KafkaConsumer

if __name__=="__main__":
    consumer=KafkaConsumer(
        "demo",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="latest"    )

    for msg in consumer:
        print(json.loads(msg.value))

You should see a view like the one given below after run the commands:

python3 producer.py
python3 consumer.py

Installation of Cassandra

We won't address the whole installation process of Cassandra but you can access all required info from Cassandra Installation.

After all installations are completed, you can demo Cassandra using cqlsh. You can check this link.

Installation of Apache Spark

We won't address the whole installation process of Apache Spark but you can access all required info from Apache Spark Installation.

After all installations are completed, you can make a quick example like here.

1. Prepare a robotic simulation environment

ROS (Robot Operating System) allows us to design a robotic environment. We will use Turtlebot3, a robot in Gazebo simulation env, to generate data for our use case. Turtlebot3 publishes its data with ROS topics. Therefore, we will subscribe the topic and send data into Kafka.

Run the simulation environment and analysis the data we will use

Turtlebot3 publishes its odometry data with ROS "odom" topic. So, we can see the published data with the given command:

# run the simulation environment
roslaunch turtlebot3_gazebo turtlebot3_world.launch

# check the topic to see data
rostopic echo /odom

You should see a view like the one given below.

header: 
  seq: 10954
  stamp: 
    secs: 365
    nsecs: 483000000
  frame_id: "odom"
child_frame_id: "base_footprint"
pose: 
  pose: 
    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526
  covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0,...
twist: 
  twist: 
    linear: 
      x: 5.8050405333644035e-08
      y: 7.749200305343809e-07
      z: 0.0
    angular: 
      x: 0.0
      y: 0.0
      z: 1.15143519181447e-05
  covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

In this use case, we will just interest the given part of the data:

    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526

2. Prepare Kafka and Zookeeper environment

The data produced by Turtlebot3 will stored into Kafka clusters.

Prepare Kafka for Use Case

First of all, we will create a new Kafka topic namely odometry for ROS odom data using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "odometry" topic for ROS odom data
bin/kafka-topics.sh --create --topic odometry --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Then we will write a ROS subscriber to listen to the data from Turtlebot3. Also, since we need to send data to Kafka, it is necessary to add a producer script in it. We will use ros/publish2kafka.py to do it. This script subscribes to the odom topic and sends the content of the topic to Kafka.

import rospy
from nav_msgs.msg import Odometry
import json
from datetime import datetime
from kafka import KafkaProducer

count = 0
def callback(msg):
    global count
    messages={
        "id":count,
        "posex":float("{0:.5f}".format(msg.pose.pose.position.x)),
        "posey":float("{0:.5f}".format(msg.pose.pose.position.y)),
        "posez":float("{0:.5f}".format(msg.pose.pose.position.z)),
        "orientx":float("{0:.5f}".format(msg.pose.pose.orientation.x)),
        "orienty":float("{0:.5f}".format(msg.pose.pose.orientation.y)),
        "orientz":float("{0:.5f}".format(msg.pose.pose.orientation.z)),
        "orientw":float("{0:.5f}".format(msg.pose.pose.orientation.w))
        }

    print(f"Producing message {datetime.now()} Message :\n {str(messages)}")
    producer.send("odometry",messages)
    count+=1

producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=lambda message: json.dumps(message).encode('utf-8')
)

if __name__=="__main__":

    rospy.init_node('odomSubscriber', anonymous=True)
    rospy.Subscriber('odom',Odometry,callback)
    rospy.spin()

You can use ros/readFromKafka.py to check the data is really reach Kafka while ROS and publish2kafka.py is running.

import json
from kafka import KafkaConsumer

if __name__=="__main__":

    consumer=KafkaConsumer(
        "odometry",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="earliest"
    )

    for msg in consumer:
        print(json.loads(msg.value))

3. Prepare Cassandra environment

Prepare Cassandra for Use Case

Initially, we will create a keyspace and then a topic in it using given command:

# Open the cqlsh and then run the command to create 'ros' keyspace
cqlsh> CREATE KEYSPACE ros WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 1};

# Then, run the command to create 'odometry' topic in 'ros'
cqlsh> create table ros.odometry(
        id int primary key, 
        posex float,
        posey float,
        posez float,
        orientx float,
        orienty float,
        orientz float,
        orientw float);

# Check your setup is correct
cqlsh> DESCRIBE ros

#and
cqlsh> DESCRIBE ros.odometry

⚠️ The content of topic has to be the same as Spark schema: Be very careful here!

4. Prepare Apache Spark structured streaming pipeline

You are able to write analysis results to either console or Cassandra.

(First Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Cassandra

We will write streaming script that read odometry topic from Kafka, analyze it and then write results to Cassandra. We will use spark-demo/streamingKafka2Cassandra.py to do it.

First of all, we create a schema same as we already defined in Cassandra.

⚠️ The content of schema has to be the same as Casssandra table: Be very careful here!

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

Then, we create a Spark Session using two packages:

  • for spark kafka connector : org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0
  • for spark cassandra connector : com.datastax.spark:spark-cassandra-connector_2.12:3.0.0
spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

⚠️ If you use spark-submit you can specify the packages as:

  • spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0 spark_cassandra.py

In order to read Kafka stream, we use readStream() and specify Kafka configurations as the given below:

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

Since Kafka send data as binary, first we need to convert the binary value to String using selectExpr() as the given below:

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

Although Apache Spark isn't capable of directly write stream data to Cassandra yet (using writeStream()), we can do it with use foreachBatch() as the given below:

def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

Finally, we got the given script spark-demo/streamingKafka2Cassandra.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,FloatType,IntegerType
from pyspark.sql.functions import from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")


df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df.printSchema()

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

# It is possible to analysis data here using df1


def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

(Second Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Console

There are a few differences between writing to the console and writing to Cassandra. First of all, we don't need to use cassandra connector, so we remove it from packages.

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()

With writeStream() we can write stream data directly to the console.

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

The rest of the process takes place in the same way as the previous one. Finally, we got the given script spark-demo/streamingKafka2Console.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,LongType,IntegerType,FloatType,StringType
from pyspark.sql.functions import split,from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

5. Result

After all the process is done, we got the data in our Cassandra table as the given below:

You can query the given command to see your table:

# Open the cqlsh 
cqlsh
# Then write select query to see content of the table
cqlsh> select * from ros.odometry

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
University Challenge 2021 With Python

University Challenge 2021 This repository contains: The TeX file of the technical write-up describing the University / HYPER Challenge 2021 under late

2 Nov 27, 2021
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Titanic data analysis for python

Titanic-data-analysis This Repo is an analysis on Titanic_mod.csv This csv file contains some assumed data of the Titanic ship after sinking This full

Hardik Bhanot 1 Dec 26, 2021
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022