PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

Overview

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra

The purpose of this project is to demonstrate a structured streaming pipeline with Apache Spark. The process consists of given steps:

  1. Installation Process
  2. Prepare a robotic simulation environment to generate data to feed into the Kafka.
  3. Prepare Kafka and Zookeeper environment to store discrete data.
  4. Prepare Cassandra environment to store analyzed data.
  5. Prepare Apache Spark structured streaming pipeline, integrate with Kafka and Cassandra.
  6. Result

0. Installation Processes

You are able to install all required components to realize this project using the given steps.

Installation of ROS and Turtlebot3

We won't address the whole installation process of ROS and Turtlebot3 but you can access all required info from ROS & Turtlebot3 Installation.

After all installations are completed, you can demo our robotic environment using the given commands:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

You should see a view like the one given below.

Installation of Kafka and Zookeeper

We won't address the whole installation process of Kafka and Zookeeper but you can access all required info from Kafka & Zookeeper Installation.

After all installations are completed, you can demo Kafka using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "demo" topic
bin/kafka-topics.sh --create --topic demo --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Once you create "demo" topic, you can run kafka-demo/producer.py and kafka-demo/consumer.py respectively to check your setup.

If you haven't installed kafka-python, use the given command and then run given files.

pip install kafka-python
  • producer.py
import time,json,random
from datetime import datetime
from data_generator import generate_message
from kafka import KafkaProducer

def serializer(message):
    return json.dumps(message).encode("utf-8")
    
producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=serializer
)

if __name__=="__main__":
    while True:
        dummy_messages=generate_message()
        print(f"Producing message {datetime.now()} | Message = {str(dummy_messages)}")
        producer.send("demo",dummy_messages)
        time.sleep(2)
  • consumer.py
import json
from kafka import KafkaConsumer

if __name__=="__main__":
    consumer=KafkaConsumer(
        "demo",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="latest"    )

    for msg in consumer:
        print(json.loads(msg.value))

You should see a view like the one given below after run the commands:

python3 producer.py
python3 consumer.py

Installation of Cassandra

We won't address the whole installation process of Cassandra but you can access all required info from Cassandra Installation.

After all installations are completed, you can demo Cassandra using cqlsh. You can check this link.

Installation of Apache Spark

We won't address the whole installation process of Apache Spark but you can access all required info from Apache Spark Installation.

After all installations are completed, you can make a quick example like here.

1. Prepare a robotic simulation environment

ROS (Robot Operating System) allows us to design a robotic environment. We will use Turtlebot3, a robot in Gazebo simulation env, to generate data for our use case. Turtlebot3 publishes its data with ROS topics. Therefore, we will subscribe the topic and send data into Kafka.

Run the simulation environment and analysis the data we will use

Turtlebot3 publishes its odometry data with ROS "odom" topic. So, we can see the published data with the given command:

# run the simulation environment
roslaunch turtlebot3_gazebo turtlebot3_world.launch

# check the topic to see data
rostopic echo /odom

You should see a view like the one given below.

header: 
  seq: 10954
  stamp: 
    secs: 365
    nsecs: 483000000
  frame_id: "odom"
child_frame_id: "base_footprint"
pose: 
  pose: 
    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526
  covariance: [1e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1e-05, 0.0, 0.0, 0.0, 0.0, 0.0,...
twist: 
  twist: 
    linear: 
      x: 5.8050405333644035e-08
      y: 7.749200305343809e-07
      z: 0.0
    angular: 
      x: 0.0
      y: 0.0
      z: 1.15143519181447e-05
  covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...

In this use case, we will just interest the given part of the data:

    position: 
      x: -2.000055643960576
      y: -0.4997879642933192
      z: -0.0010013932644100873
    orientation: 
      x: -1.3486164084605e-05
      y: 0.0038530870521455017
      z: 0.0016676819550213058
      w: 0.9999911861487526

2. Prepare Kafka and Zookeeper environment

The data produced by Turtlebot3 will stored into Kafka clusters.

Prepare Kafka for Use Case

First of all, we will create a new Kafka topic namely odometry for ROS odom data using the given commands:

# Change your path to Kafka folder and then run 
bin/zookeeper-server-start.sh config/zookeeper.properties

# Open second terminal and then run
bin/kafka-server-start.sh config/server.properties

# Create Kafka "odometry" topic for ROS odom data
bin/kafka-topics.sh --create --topic odometry --partitions 1 --replication-factor 1 -bootstrap-server localhost:9092

Then we will write a ROS subscriber to listen to the data from Turtlebot3. Also, since we need to send data to Kafka, it is necessary to add a producer script in it. We will use ros/publish2kafka.py to do it. This script subscribes to the odom topic and sends the content of the topic to Kafka.

import rospy
from nav_msgs.msg import Odometry
import json
from datetime import datetime
from kafka import KafkaProducer

count = 0
def callback(msg):
    global count
    messages={
        "id":count,
        "posex":float("{0:.5f}".format(msg.pose.pose.position.x)),
        "posey":float("{0:.5f}".format(msg.pose.pose.position.y)),
        "posez":float("{0:.5f}".format(msg.pose.pose.position.z)),
        "orientx":float("{0:.5f}".format(msg.pose.pose.orientation.x)),
        "orienty":float("{0:.5f}".format(msg.pose.pose.orientation.y)),
        "orientz":float("{0:.5f}".format(msg.pose.pose.orientation.z)),
        "orientw":float("{0:.5f}".format(msg.pose.pose.orientation.w))
        }

    print(f"Producing message {datetime.now()} Message :\n {str(messages)}")
    producer.send("odometry",messages)
    count+=1

producer = KafkaProducer(
    bootstrap_servers=["localhost:9092"],
    value_serializer=lambda message: json.dumps(message).encode('utf-8')
)

if __name__=="__main__":

    rospy.init_node('odomSubscriber', anonymous=True)
    rospy.Subscriber('odom',Odometry,callback)
    rospy.spin()

You can use ros/readFromKafka.py to check the data is really reach Kafka while ROS and publish2kafka.py is running.

import json
from kafka import KafkaConsumer

if __name__=="__main__":

    consumer=KafkaConsumer(
        "odometry",
        bootstrap_servers="localhost:9092",
        auto_offset_reset="earliest"
    )

    for msg in consumer:
        print(json.loads(msg.value))

3. Prepare Cassandra environment

Prepare Cassandra for Use Case

Initially, we will create a keyspace and then a topic in it using given command:

# Open the cqlsh and then run the command to create 'ros' keyspace
cqlsh> CREATE KEYSPACE ros WITH replication = {'class':'SimpleStrategy', 'replication_factor' : 1};

# Then, run the command to create 'odometry' topic in 'ros'
cqlsh> create table ros.odometry(
        id int primary key, 
        posex float,
        posey float,
        posez float,
        orientx float,
        orienty float,
        orientz float,
        orientw float);

# Check your setup is correct
cqlsh> DESCRIBE ros

#and
cqlsh> DESCRIBE ros.odometry

⚠️ The content of topic has to be the same as Spark schema: Be very careful here!

4. Prepare Apache Spark structured streaming pipeline

You are able to write analysis results to either console or Cassandra.

(First Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Cassandra

We will write streaming script that read odometry topic from Kafka, analyze it and then write results to Cassandra. We will use spark-demo/streamingKafka2Cassandra.py to do it.

First of all, we create a schema same as we already defined in Cassandra.

⚠️ The content of schema has to be the same as Casssandra table: Be very careful here!

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

Then, we create a Spark Session using two packages:

  • for spark kafka connector : org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0
  • for spark cassandra connector : com.datastax.spark:spark-cassandra-connector_2.12:3.0.0
spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

⚠️ If you use spark-submit you can specify the packages as:

  • spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.0.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0 spark_cassandra.py

In order to read Kafka stream, we use readStream() and specify Kafka configurations as the given below:

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

Since Kafka send data as binary, first we need to convert the binary value to String using selectExpr() as the given below:

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

Although Apache Spark isn't capable of directly write stream data to Cassandra yet (using writeStream()), we can do it with use foreachBatch() as the given below:

def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

Finally, we got the given script spark-demo/streamingKafka2Cassandra.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,FloatType,IntegerType
from pyspark.sql.functions import from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SparkStructuredStreaming") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0,com.datastax.spark:spark-cassandra-connector_2.12:3.0.0") \
    .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")


df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df.printSchema()

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

# It is possible to analysis data here using df1


def writeToCassandra(writeDF, _):
  writeDF.write \
    .format("org.apache.spark.sql.cassandra")\
    .mode('append')\
    .options(table="odometry", keyspace="ros")\
    .save()

df1.writeStream \
    .option("spark.cassandra.connection.host","localhost:9042")\
    .foreachBatch(writeToCassandra) \
    .outputMode("update") \
    .start()\
    .awaitTermination()

(Second Way) Prepare Apache Spark Structured Streaming Pipeline Kafka to Console

There are a few differences between writing to the console and writing to Cassandra. First of all, we don't need to use cassandra connector, so we remove it from packages.

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()

With writeStream() we can write stream data directly to the console.

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

The rest of the process takes place in the same way as the previous one. Finally, we got the given script spark-demo/streamingKafka2Console.py:

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField,LongType,IntegerType,FloatType,StringType
from pyspark.sql.functions import split,from_json,col

odometrySchema = StructType([
                StructField("id",IntegerType(),False),
                StructField("posex",FloatType(),False),
                StructField("posey",FloatType(),False),
                StructField("posez",FloatType(),False),
                StructField("orientx",FloatType(),False),
                StructField("orienty",FloatType(),False),
                StructField("orientz",FloatType(),False),
                StructField("orientw",FloatType(),False)
            ])

spark = SparkSession \
    .builder \
    .appName("SSKafka") \
    .config("spark.jars.packages","org.apache.spark:spark-sql-kafka-0-10_2.12:3.2.0") \
    .getOrCreate()
spark.sparkContext.setLogLevel("ERROR")

df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "odometry") \
  .option("delimeter",",") \
  .option("startingOffsets", "latest") \
  .load() 

df1 = df.selectExpr("CAST(value AS STRING)").select(from_json(col("value"),odometrySchema).alias("data")).select("data.*")
df1.printSchema()

df1.writeStream \
  .outputMode("update") \
  .format("console") \
  .option("truncate", False) \
  .start() \
  .awaitTermination()

5. Result

After all the process is done, we got the data in our Cassandra table as the given below:

You can query the given command to see your table:

# Open the cqlsh 
cqlsh
# Then write select query to see content of the table
cqlsh> select * from ros.odometry

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere.

opendrift OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere. Do

OpenDrift 167 Dec 13, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022