A pipeline that creates consensus sequences from a Nanopore reads. I

Overview
Authors: 
Ada Madejska, MCDB, UCSB  (contact: [email protected])
Nick Noll, UCSB

This pipeline takes error-prone Nanopore reads and tries to increase the percentage identity
of the results of identifying species with BLAST. The reads in fastq format are put through the pipeline
which includes the following steps.
1. Quality control 
    - very short and very long reads (reads that highly deviate from the usual length of the 16S sequence)
    are dropped.
2. Kmer frequency matrix
    - make a kmer frequency matrix based on the reads from the quality control step. The value of k
    can be changed (k=5 or 6 is recommended)
3. UMAP projection and HDBSCAN clustering
    - the kmer frequency matrix is used to create a UMAP projection. The default parameters for UMAP
    and HDBSCAN functions have been chosen based on mock dataset but can be changed. 
4. Refinement 
    - based on our tests on mock datasets, sometimes reads from different species can cluster together.
    To prevent that, we include a refinement step based on MSA of Clustal Omega on each cluster.
    The alignment outputs a guide tree which is used for dividing the cluster into smaller subclusters.
    The distance threshold can be changed to suit each dataset.
5. Consensus making
    - lastly, based on the defined clusters, the last step creates a consensus sequence based on 
    majority calling. The direction of the reads is fixed using minimap2, the alignment is performed 
    by MAFFT, and the consensus is created using em_cons. The reads are run through BLASTN to check
    for identity of each cluster. 

Software Dependencies:

To successfully run the pipeline, certain software need to be installed.
1. Minimap2 - for the consensus making step (https://github.com/lh3/minimap2)
2. MAFFT - for alignment in the consensus making step (https://mafft.cbrc.jp/alignment/software/)
3. EM_CONS - for creating the consensus (http://emboss.sourceforge.net/apps/cvs/emboss/apps/cons.html)
4. NCBIN - for identification of the consensus sequences in the database 
    (https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/) (a 16S database is also required)
5. CLUSTALO - for the refinement step (http://www.clustal.org/omega/)

Specifications:

This pipeline runs in python3.8.10 and julia v"1.4.1". 

The following Python libraries are also required:
BioPython
hdbscan
matplotlib
pandas
sklearn
umap

Following Julia packages are required:
Pkg
DataFrames
CSV
Owner
Ada Madejska
UCSB Graduate Student in Computational Biology
Ada Madejska
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
๐Ÿงช Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

๐Ÿงช๐Ÿ“ˆ ๐Ÿ. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023