Random dataframe and database table generator

Overview

Random database/dataframe generator

Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA

Introduction

Often, beginners in SQL or data science struggle with the matter of easy access to a large sample database file (.DB or .sqlite) for practicing SQL commands. Would it not be great to have a simple tool or library to generate a large database with multiple tables, filled with data of one's own choice?

After all, databases break every now and then and it is safest to practice with a randomly generated one :-)

https://imgs.xkcd.com/comics/exploits_of_a_mom.png

While it is easy to generate random numbers or simple words for Pandas or dataframe operation learning, it is often non-trivial to generate full data tables with meaningful yet random entries of most commonly encountered fields in the world of database, such as

  • name,
  • age,
  • birthday,
  • credit card number,
  • SSN,
  • email id,
  • physical address,
  • company name,
  • job title,

This Python package generates a random database TABLE (or a Pandas dataframe, or an Excel file) based on user's choice of data types (database fields). User can specify the number of samples needed. One can also designate a "PRIMARY KEY" for the database table. Finally, the TABLE is inserted into a new or existing database file of user's choice.

https://raw.githubusercontent.com/tirthajyoti/pydbgen/master/images/Top_image_1.png

Dependency and Acknowledgement

At its core, pydbgen uses Faker as the default random data generating engine for most of the data types. Original function is written for few data types such as realistic email and license plate. Also the default phone number generated by Faker is free-format and does not correspond to US 10 digit format. Therefore, a simple phone number data type is introduced in pydbgen. The original contribution of pydbgen is to take the single data-generating function from Faker and use it cleverly to generate Pandas data series or dataframe or SQLite database tables as per the specification of the user. Here is the link if you want to look up more about Faker package,

Faker Documentation Home

Installation

(On Linux and Windows) You can use pip to install pydbgen:

pip install pydbgen

(On Mac OS), first install pip,

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

Then proceed as above.

Usage

Current version (1.0.0) of pydbgen comes with the following primary methods,

  • gen_data_series()
  • gen_dataframe()
  • gen_table()
  • gen_excel()

The gen_table() method allows you to build a database with as many tables as you want, filled with random data and fields of your choice. But first, you have to create an object of pydb class:

myDB = pydbgen.pydb()

gen_data_series()

Returns a Pandas series object with the desired number of entries and data type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Phone number can be of two types:

  • phone_number_simple generates 10 digit US number in xxx-xxx-xxxx format
  • phone_number_full may generate an international number with different format

Code example:

se=myDB.gen_data_series(data_type='date')
print(se)

0    1995-08-09
1    2001-08-01
2    1980-06-26
3    2018-02-18
4    1972-10-12
5    1983-11-12
6    1975-09-04
7    1970-11-01
8    1978-03-23
9    1976-06-03
dtype: object

gen_dataframe()

Generates a Pandas dataframe filled with random entries. User can specify the number of rows and data type of the fields/columns.

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.

Code example:

testdf=myDB.gen_dataframe(
25,fields=['name','city','phone',
'license_plate','email'],
real_email=True,phone_simple=True
)

gen_table()

Attempts to create a table in a database (.db) file using Python's built-in SQLite engine. User can specify various data types to be included as database table fields.

All data types (fields) in the SQLite table will be of VARCHAR type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.
  • db_file: Name of the database where the TABLE will be created or updated. Default database name will be chosen if not specified by user.
  • table_name: Name of the table, to be chosen by user. Default table name will be chosen if not specified by user.
  • primarykey: User can choose a PRIMARY KEY from among the various fields. If nothing specified, the first data field will be made PRIMARY KEY. If user chooses a field, which is not in the specified list, an error will be thrown and no table will be generated.

Code example:

myDB.gen_table(
20,fields=['name','city','job_title','phone','company','email'],
db_file='TestDB.db',table_name='People',
primarykey='name',real_city=False
)

gen_excel()

Attempts to create an Excel file using Pandas excel_writer function. User can specify various data types to be included. All data types (fields) in the Excel file will be of text type. Data types available:

  • Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
  • Month, weekday, year, time, date
  • Personal email, official email, SSN
  • Company, Job title, phone number, license plate

Customization choices are following:

  • real_email: If True and if a person's name is also included in the fields, a realistic email will be generated corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will generate emails like [email protected] or [email protected].
  • real_city: If True, a real US city's name will be picked up from a list (included as a text data file with the installation package). Otherwise, a fictitious city name will be generated.
  • phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise, an international number with different format may be returned.
  • filename: Name of the Excel file to be created or updated. Default file name will be chosen if not specified by user.

Code example:

myDB.gen_excel(15,fields=['name','year','email','license_plate'],
        filename='TestExcel.xlsx',real_email=True)

Other auxiliary methods available

Few other auxiliary functions available in this package.

Owner
Tirthajyoti Sarkar
Data Sc/Engineering manager , Industry 4.0, edge-computing, semiconductor technologist, Author, Python pkgs - pydbgen, MLR, and doepy,
Tirthajyoti Sarkar
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
Bigdata Simulation Library Of Dream By Sandman Books

BIGDATA SIMULATION LIBRARY OF DREAM BY SANDMAN BOOKS ================= Solution Architecture Description In the realm of Dreaming, its ruler SANDMAN,

Maycon Cypriano 3 Jun 30, 2022
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
Orchest is a browser based IDE for Data Science.

Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well

Orchest 3.6k Jan 09, 2023
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023