Pipetools enables function composition similar to using Unix pipes.

Overview

Pipetools

tests-badge coverage-badge pypi-badge

Complete documentation

pipetools enables function composition similar to using Unix pipes.

It allows forward-composition and piping of arbitrary functions - no need to decorate them or do anything extra.

It also packs a bunch of utils that make common operations more convenient and readable.

Source is on github.

Why?

Piping and function composition are some of the most natural operations there are for plenty of programming tasks. Yet Python doesn't have a built-in way of performing them. That forces you to either deep nesting of function calls or adding extra glue code.

Example

Say you want to create a list of python files in a given directory, ordered by filename length, as a string, each file on one line and also with line numbers:

>>> print(pyfiles_by_length('../pipetools'))
1. ds_builder.py
2. __init__.py
3. compat.py
4. utils.py
5. main.py

All the ingredients are already there, you just have to glue them together. You might write it like this:

def pyfiles_by_length(directory):
    all_files = os.listdir(directory)
    py_files = [f for f in all_files if f.endswith('.py')]
    sorted_files = sorted(py_files, key=len, reverse=True)
    numbered = enumerate(py_files, 1)
    rows = ("{0}. {1}".format(i, f) for i, f in numbered)
    return '\n'.join(rows)

Or perhaps like this:

def pyfiles_by_length(directory):
    return '\n'.join('{0}. {1}'.format(*x) for x in enumerate(reversed(sorted(
        [f for f in os.listdir(directory) if f.endswith('.py')], key=len)), 1))

Or, if you're a mad scientist, you would probably do it like this:

pyfiles_by_length = lambda d: (reduce('{0}\n{1}'.format,
    map(lambda x: '%d. %s' % x, enumerate(reversed(sorted(
        filter(lambda f: f.endswith('.py'), os.listdir(d)), key=len))))))

But there should be one -- and preferably only one -- obvious way to do it.

So which one is it? Well, to redeem the situation, pipetools give you yet another possibility!

pyfiles_by_length = (pipe
    | os.listdir
    | where(X.endswith('.py'))
    | sort_by(len).descending
    | (enumerate, X, 1)
    | foreach("{0}. {1}")
    | '\n'.join)

Why would I do that, you ask? Comparing to the native Python code, it's

  • Easier to read -- minimal extra clutter
  • Easier to understand -- one-way data flow from one step to the next, nothing else to keep track of
  • Easier to change -- want more processing? just add a step to the pipeline
  • Removes some bug opportunities -- did you spot the bug in the first example?

Of course it won't solve all your problems, but a great deal of code can be expressed as a pipeline, giving you the above benefits. Read on to see how it works!

Installation

$ pip install pipetools

Uh, what's that?

Usage

The pipe

The pipe object can be used to pipe functions together to form new functions, and it works like this:

from pipetools import pipe

f = pipe | a | b | c

# is the same as:
def f(x):
    return c(b(a(x)))

A real example, sum of odd numbers from 0 to x:

from functools import partial
from pipetools import pipe

odd_sum = pipe | range | partial(filter, lambda x: x % 2) | sum

odd_sum(10)  # -> 25

Note that the chain up to the sum is lazy.

Automatic partial application in the pipe

As partial application is often useful when piping things together, it is done automatically when the pipe encounters a tuple, so this produces the same result as the previous example:

odd_sum = pipe | range | (filter, lambda x: x % 2) | sum

As of 0.1.9, this is even more powerful, see X-partial.

Built-in tools

Pipetools contain a set of pipe-utils that solve some common tasks. For example there is a shortcut for the filter class from our example, called where():

from pipetools import pipe, where

odd_sum = pipe | range | where(lambda x: x % 2) | sum

Well that might be a bit more readable, but not really a huge improvement, but wait!

If a pipe-util is used as first or second item in the pipe (which happens quite often) the pipe at the beginning can be omitted:

odd_sum = range | where(lambda x: x % 2) | sum

See pipe-utils' documentation.

OK, but what about the ugly lambda?

where(), but also foreach(), sort_by() and other pipe-utils can be quite useful, but require a function as an argument, which can either be a named function -- which is OK if it does something complicated -- but often it's something simple, so it's appropriate to use a lambda. Except Python's lambdas are quite verbose for simple tasks and the code gets cluttered...

X object to the rescue!

from pipetools import where, X

odd_sum = range | where(X % 2) | sum

How 'bout that.

Read more about the X object and it's limitations.

Automatic string formatting

Since it doesn't make sense to compose functions with strings, when a pipe (or a pipe-util) encounters a string, it attempts to use it for (advanced) formatting:

>>> countdown = pipe | (range, 1) | reversed | foreach('{}...') | ' '.join | '{} boom'
>>> countdown(5)
'4... 3... 2... 1... boom'

Feeding the pipe

Sometimes it's useful to create a one-off pipe and immediately run some input through it. And since this is somewhat awkward (and not very readable, especially when the pipe spans multiple lines):

result = (pipe | foo | bar | boo)(some_input)

It can also be done using the > operator:

result = some_input > pipe | foo | bar | boo

Note

Note that the above method of input won't work if the input object defines __gt__ for any object - including the pipe. This can be the case for example with some objects from math libraries such as NumPy. If you experience strange results try falling back to the standard way of passing input into a pipe.

But wait, there is more

Checkout the Maybe pipe, partial application on steroids or automatic data structure creation in the full documentation.

small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como código Utuilizando um cluster Kubernetes na Azure Ingestão

Otacilio Filho 4 Jan 23, 2022
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms

MatrixProfile MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is

Matrix Profile Foundation 302 Dec 29, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022