Learn machine learning the fun way, with Oracle and RedBull Racing

Overview

Red Bull Racing Analytics Hands-On Labs

License: UPL Quality gate

Introduction

Are you interested in learning machine learning (ML)? How about doing this in the context of the exciting world of F1 racing?! Get your ML skills bootstrapped here with Oracle and Red Bull Racing!

Red Bull F1 Race Car

This tutorial teaches ML analytics with a series of hands-on labs (HOLs) using the Data Science service in Oracle Cloud Infrastructure.

You'll learn how to get data from some public data sources, then how to analyze this data using some of the latest ML techniques. In the process you'll build ML models and test them out in a predictor app.

Getting Started

There is some infrastructure that must be deployed before you can enjoy this tutorial. See the Terraform documentation for more information.

After the OCI infrastructure is deployed, proceed with the beginner's tutorial to start through the ML labs.

Prerequisites

You must have an OCI account. Click here to create a new cloud account.

This solution is designed to work with several OCI services, allowing you to quickly be up-and-running:

There are required OCI resources (see the Terraform documentation for more information) that are needed for this tutorial.

Notes/Issues

None at this time.

URLs

Contributing

This project is open source. Please submit your contributions by forking this repository and submitting a pull request! Oracle appreciates any contributions that are made by the open source community.

License

Copyright (c) 2021 Oracle and/or its affiliates.

Licensed under the Universal Permissive License (UPL), Version 1.0.

See LICENSE for more details.

Comments
  • Refactored Terraform code

    Refactored Terraform code

    • Compatible with ORM, Cloud Shell and Terraform CLI
    • Updated README to include instructions for all three methods
    • Refactored, removing unnecessary resources (Vault, public Subnet, etc.).
    • Added a nerd knob so that it could use an existing Group (rather than create a new one)
    • Fixed ORM RegEx filters to allow dashes (-) and underscores (_), for the names
    opened by timclegg 2
  • Issue with hands on lab guide - launchapp.sh missing

    Issue with hands on lab guide - launchapp.sh missing

    https://github.com/oracle-devrel/redbull-analytics-hol/tree/main/beginners#beginners-hands-on-lab

    In Starting The Web Application it reads:

    cd /home/opc/redbull-analytics-hol/beginners/web ./launchapp.sh start

    However is launchapp.sh is missing, for example

    (redbullenv) cd /home/opc/redbull-analytics-hol/beginners/web (redbullenv) ./launchapp.sh start bash: ./launchapp.sh: No such file or directory

    opened by raekins 1
  • fix: Updating schema.yaml syntax

    fix: Updating schema.yaml syntax

    Making the variable notation follow what the doc syntax shows (https://docs.oracle.com/en-us/iaas/Content/ResourceManager/Concepts/terraformconfigresourcemanager_topic-schema.htm)

    opened by timclegg 1
  • Exploratory Data Analysis Merge Issue

    Exploratory Data Analysis Merge Issue

    Hello I have been encountering an issue while running the lab. The Jupyter notebook 03.f1_analysis_EDA.ipynb has the following issue on cell number 5:


    ValueError Traceback (most recent call last) in ----> 1 df1 = pd.merge(races,results,how='inner',on=['raceId']) 2 df2 = pd.merge(df1,quali,how='inner',on=['raceId','driverId','constructorId']) 3 df3 = pd.merge(df2,drivers,how='inner',on=['driverId']) 4 df4 = pd.merge(df3,constructors,how='inner',on=['constructorId']) 5 df5 = pd.merge(df4,circuit,how='inner',on=['circuitId'])

    ~/redbullenv/lib64/python3.6/site-packages/pandas/core/reshape/merge.py in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate) 85 copy=copy, 86 indicator=indicator, ---> 87 validate=validate, 88 ) 89 return op.get_result()

    ~/redbullenv/lib64/python3.6/site-packages/pandas/core/reshape/merge.py in init(self, left, right, how, on, left_on, right_on, axis, left_index, right_index, sort, suffixes, copy, indicator, validate) 654 # validate the merge keys dtypes. We may need to coerce 655 # to avoid incompatible dtypes --> 656 self._maybe_coerce_merge_keys() 657 658 # If argument passed to validate,

    ~/redbullenv/lib64/python3.6/site-packages/pandas/core/reshape/merge.py in _maybe_coerce_merge_keys(self) 1163 inferred_right in string_types and inferred_left not in string_types 1164 ): -> 1165 raise ValueError(msg) 1166 1167 # datetimelikes must match exactly

    ValueError: You are trying to merge on object and int64 columns. If you wish to proceed you should use pd.concat

    I’m using an oracle automatic deployment provided by oracle as part of their environment. I do not have a lot of experience with Python but one possible ible solution is to read the numeric values form the csv file as integer or float but I’m almost certain the solution might be a little more elaborated than that 😉. Anyway thanks for your time. I’m really excited to test your solution and finish the lab. Thanks again.

    opened by yankodavila 2
  • Has the PAR for the stack deploy image expired.

    Has the PAR for the stack deploy image expired.

    Cannot deploy stack as getting PAR expired message.

    2021/11/07 10:50:11[TERRAFORM_CONSOLE] [INFO] Error Message: work request did not succeed, workId: ocid1.coreservicesworkrequest.oc1.eu-amsterdam-1.abqw2ljrwz2n7qqj7ghdwtnlrqol355oumc7a6coushvgdrebskspaewh7ea, entity: image, action: CREATED. Message: Import image not found: PAR is invalid (maybe is expired or deleted), please check.

    PAR in stack file is https://objectstorage.eu-frankfurt-1.oraclecloud.com/p/khhPjc_IMuyBOMfZUcJajIzCpoZ5aC-D7VMCU__GVZRlIQueXLIIcaaqLOZIuT1a/n/emeasespainsandbox/b/publichol/o/redbullhol-20210809-1523

    opened by Mel-A-M 1
Releases(v0.1.8)
Owner
Oracle DevRel
Oracle DevRel
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
The repo for mlbtradetrees.com. Analyze any trade in baseball history!

The repo for mlbtradetrees.com. Analyze any trade in baseball history!

7 Nov 20, 2022
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022