Learn machine learning the fun way, with Oracle and RedBull Racing

Overview

Red Bull Racing Analytics Hands-On Labs

License: UPL Quality gate

Introduction

Are you interested in learning machine learning (ML)? How about doing this in the context of the exciting world of F1 racing?! Get your ML skills bootstrapped here with Oracle and Red Bull Racing!

Red Bull F1 Race Car

This tutorial teaches ML analytics with a series of hands-on labs (HOLs) using the Data Science service in Oracle Cloud Infrastructure.

You'll learn how to get data from some public data sources, then how to analyze this data using some of the latest ML techniques. In the process you'll build ML models and test them out in a predictor app.

Getting Started

There is some infrastructure that must be deployed before you can enjoy this tutorial. See the Terraform documentation for more information.

After the OCI infrastructure is deployed, proceed with the beginner's tutorial to start through the ML labs.

Prerequisites

You must have an OCI account. Click here to create a new cloud account.

This solution is designed to work with several OCI services, allowing you to quickly be up-and-running:

There are required OCI resources (see the Terraform documentation for more information) that are needed for this tutorial.

Notes/Issues

None at this time.

URLs

Contributing

This project is open source. Please submit your contributions by forking this repository and submitting a pull request! Oracle appreciates any contributions that are made by the open source community.

License

Copyright (c) 2021 Oracle and/or its affiliates.

Licensed under the Universal Permissive License (UPL), Version 1.0.

See LICENSE for more details.

Comments
  • Refactored Terraform code

    Refactored Terraform code

    • Compatible with ORM, Cloud Shell and Terraform CLI
    • Updated README to include instructions for all three methods
    • Refactored, removing unnecessary resources (Vault, public Subnet, etc.).
    • Added a nerd knob so that it could use an existing Group (rather than create a new one)
    • Fixed ORM RegEx filters to allow dashes (-) and underscores (_), for the names
    opened by timclegg 2
  • Issue with hands on lab guide - launchapp.sh missing

    Issue with hands on lab guide - launchapp.sh missing

    https://github.com/oracle-devrel/redbull-analytics-hol/tree/main/beginners#beginners-hands-on-lab

    In Starting The Web Application it reads:

    cd /home/opc/redbull-analytics-hol/beginners/web ./launchapp.sh start

    However is launchapp.sh is missing, for example

    (redbullenv) cd /home/opc/redbull-analytics-hol/beginners/web (redbullenv) ./launchapp.sh start bash: ./launchapp.sh: No such file or directory

    opened by raekins 1
  • fix: Updating schema.yaml syntax

    fix: Updating schema.yaml syntax

    Making the variable notation follow what the doc syntax shows (https://docs.oracle.com/en-us/iaas/Content/ResourceManager/Concepts/terraformconfigresourcemanager_topic-schema.htm)

    opened by timclegg 1
  • Exploratory Data Analysis Merge Issue

    Exploratory Data Analysis Merge Issue

    Hello I have been encountering an issue while running the lab. The Jupyter notebook 03.f1_analysis_EDA.ipynb has the following issue on cell number 5:


    ValueError Traceback (most recent call last) in ----> 1 df1 = pd.merge(races,results,how='inner',on=['raceId']) 2 df2 = pd.merge(df1,quali,how='inner',on=['raceId','driverId','constructorId']) 3 df3 = pd.merge(df2,drivers,how='inner',on=['driverId']) 4 df4 = pd.merge(df3,constructors,how='inner',on=['constructorId']) 5 df5 = pd.merge(df4,circuit,how='inner',on=['circuitId'])

    ~/redbullenv/lib64/python3.6/site-packages/pandas/core/reshape/merge.py in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate) 85 copy=copy, 86 indicator=indicator, ---> 87 validate=validate, 88 ) 89 return op.get_result()

    ~/redbullenv/lib64/python3.6/site-packages/pandas/core/reshape/merge.py in init(self, left, right, how, on, left_on, right_on, axis, left_index, right_index, sort, suffixes, copy, indicator, validate) 654 # validate the merge keys dtypes. We may need to coerce 655 # to avoid incompatible dtypes --> 656 self._maybe_coerce_merge_keys() 657 658 # If argument passed to validate,

    ~/redbullenv/lib64/python3.6/site-packages/pandas/core/reshape/merge.py in _maybe_coerce_merge_keys(self) 1163 inferred_right in string_types and inferred_left not in string_types 1164 ): -> 1165 raise ValueError(msg) 1166 1167 # datetimelikes must match exactly

    ValueError: You are trying to merge on object and int64 columns. If you wish to proceed you should use pd.concat

    I’m using an oracle automatic deployment provided by oracle as part of their environment. I do not have a lot of experience with Python but one possible ible solution is to read the numeric values form the csv file as integer or float but I’m almost certain the solution might be a little more elaborated than that 😉. Anyway thanks for your time. I’m really excited to test your solution and finish the lab. Thanks again.

    opened by yankodavila 2
  • Has the PAR for the stack deploy image expired.

    Has the PAR for the stack deploy image expired.

    Cannot deploy stack as getting PAR expired message.

    2021/11/07 10:50:11[TERRAFORM_CONSOLE] [INFO] Error Message: work request did not succeed, workId: ocid1.coreservicesworkrequest.oc1.eu-amsterdam-1.abqw2ljrwz2n7qqj7ghdwtnlrqol355oumc7a6coushvgdrebskspaewh7ea, entity: image, action: CREATED. Message: Import image not found: PAR is invalid (maybe is expired or deleted), please check.

    PAR in stack file is https://objectstorage.eu-frankfurt-1.oraclecloud.com/p/khhPjc_IMuyBOMfZUcJajIzCpoZ5aC-D7VMCU__GVZRlIQueXLIIcaaqLOZIuT1a/n/emeasespainsandbox/b/publichol/o/redbullhol-20210809-1523

    opened by Mel-A-M 1
Releases(v0.1.8)
Owner
Oracle DevRel
Oracle DevRel
Data science/Analysis Health Care Portfolio

Health-Care-DS-Projects Data Science/Analysis Health Care Portfolio Consists Of 3 Projects: Mexico Covid-19 project, analyze the patient medical histo

Mohamed Abd El-Mohsen 1 Feb 13, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks

qgrid Qgrid is a Jupyter notebook widget which uses SlickGrid to render pandas DataFrames within a Jupyter notebook. This allows you to explore your D

Quantopian, Inc. 2.9k Jan 08, 2023
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
An extension to pandas dataframes describe function.

pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie

Mourad 450 Dec 30, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021