An extension to pandas dataframes describe function.

Overview

pandas_summary

An extension to pandas dataframes describe function.

The module contains DataFrameSummary object that extend describe() with:

  • properties
    • dfs.columns_stats: counts, uniques, missing, missing_perc, and type per column
    • dsf.columns_types: a count of the types of columns
    • dfs[column]: more in depth summary of the column
  • function
    • summary(): extends the describe() function with the values with columns_stats

Installation

The module can be easily installed with pip:

> pip install pandas-summary

This module depends on numpy and pandas. Optionally you can get also some nice visualisations if you have matplotlib installed.

Tests

To run the tests, execute the command python setup.py test

Usage

The module contains one class:

DataFrameSummary

The DataFrameSummary expect a pandas DataFrame to summarise.

from pandas_summary import DataFrameSummary

dfs = DataFrameSummary(df)

getting the columns types

dfs.columns_types


numeric     9
bool        3
categorical 2
unique      1
date        1
constant    1
dtype: int64

getting the columns stats

dfs.columns_stats


                      A            B        C              D              E 
counts             5802         5794     5781           5781           4617   
uniques            5802            3     5771            128            121   
missing               0            8       21             21           1185   
missing_perc         0%        0.14%    0.36%          0.36%         20.42%   
types            unique  categorical  numeric        numeric        numeric 

getting a single column summary, e.g. numerical column

# we can also access the column using numbers A[1]
dfs['A']

std                                                                 0.2827146
max                                                                  1.072792
min                                                                         0
variance                                                           0.07992753
mean                                                                0.5548516
5%                                                                  0.1603367
25%                                                                 0.3199776
50%                                                                 0.4968588
75%                                                                 0.8274732
95%                                                                  1.011255
iqr                                                                 0.5074956
kurtosis                                                            -1.208469
skewness                                                            0.2679559
sum                                                                  3207.597
mad                                                                 0.2459508
cv                                                                  0.5095319
zeros_num                                                                  11
zeros_perc                                                               0,1%
deviating_of_mean                                                          21
deviating_of_mean_perc                                                  0.36%
deviating_of_median                                                        21
deviating_of_median_perc                                                0.36%
top_correlations                         {u'D': 0.702240243124, u'E': -0.663}
counts                                                                   5781
uniques                                                                  5771
missing                                                                    21
missing_perc                                                            0.36%
types                                                                 numeric
Name: A, dtype: object

Future development

Summary analysis between columns, i.e. dfs[[1, 2]]

Owner
Mourad
engineer, startup enthusiast, philosophy and music lover, coffeeholic... and more
Mourad
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022