The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

Related tags

Data AnalysisViTAE
Overview

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

Introduction | Updates | Usage | Results&Pretrained Models | Statement |

Introduction

This repository contains the code, models, test results for the paper ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias. It contains several reduction cells and normal cells to introduce scale-invariance and locality into vision transformers.

Updates

07/12/2021 The code is released!

19/10/2021 The paper is accepted by Neurips'2021! The code will be released soon!

06/08/2021 The paper is post on arxiv! The code will be made public available once cleaned up.

Usage

Install

  • Clone this repo:
git clone https://github.com/Annbless/ViTAE.git
cd ViTAE
  • Create a conda virtual environment and activate it:
conda create -n vitae python=3.7 -y
conda activate vitae
conda install pytorch==1.8.1 torchvision==0.9.1 cudatoolkit=10.2 -c pytorch -c conda-forge
  • Install timm==0.3.4:
pip install timm==0.3.4
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
git reset --hard a651e2c24ecf97cbf367fd3f330df36760e1c597
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install pyyaml ipdb

Data Prepare

We use standard ImageNet dataset, you can download it from http://image-net.org/. The file structure should look like:

$ tree data
imagenet
├── train
│   ├── class1
│   │   ├── img1.jpeg
│   │   ├── img2.jpeg
│   │   └── ...
│   ├── class2
│   │   ├── img3.jpeg
│   │   └── ...
│   └── ...
└── val
    ├── class1
    │   ├── img4.jpeg
    │   ├── img5.jpeg
    │   └── ...
    ├── class2
    │   ├── img6.jpeg
    │   └── ...
    └── ...

Evaluation

Take ViTAE_basic_7 as an example, to evaluate the pretrained ViTAE model on ImageNet val, run

python validate.py [ImageNetPath] --model ViTAE_basic_7 --eval_checkpoint [Checkpoint Path]

Training

Take ViTAE_basic_7 as an example, to train the ViTAE model on ImageNet with 4 GPU and 512 batch size, run

python -m torch.distributed.launch --nproc_per_node=4 main.py [ImageNetPath] --model ViTAE_basic_7 -b 128 --lr 1e-3 --weight-decay .03 --img-size 224 --amp

The trained model file will be saved under the output folder

Results

Main Results on ImageNet-1K with pretrained models

name resolution [email protected] [email protected] [email protected] Pretrained
ViTAE-T 224x224 75.3 92.7 82.9 Coming Soon
ViTAE-6M 224x224 77.9 94.1 84.9 Coming Soon
ViTAE-13M 224x224 81.0 95.4 86.9 Coming Soon
ViTAE-S 224x224 82.0 95.9 87.0 Coming Soon

Statement

This project is for research purpose only. For any other questions please contact yufei.xu at outlook.com qmzhangzz at hotmail.com .

MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022