SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

Overview

SNV Pipeline

SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38). The pipeline requires user defined datasets & annotation sources, available tools and input set of vcf files. It generates analysis scripts that can be incorporated into high performance cluster (HPC) computing to process the samples. This results in list of filtered variants per family that can be used for interpreation, reporting and further downstream analysis.

For demonstration purpose below example is presented for GRCh37. However, the same can be replicated for GRCh38.

Installation

git clone https://github.com/ajaarma/snv.git

Required Installation packages

Install anaconda v2.0
Follow this link for installation: https://docs.anaconda.com/anaconda/install/linux/
Conda environment commands
$ conda create --name snv
$ source activate snv
$ conda install python=2.7.16
$ pip install xmltodict
$ pip install dicttoxml

$ conda install -c bioconda gvcfgenotyper
$ conda install -c anaconda gawk	
$ conda install samtools=1.3
$ conda install vcftools=0.1.14
$ conda install bcftools=1.9
$ conda install gcc #(OSX)
$ conda install gcc_linux-64 #(Linux)
$ conda install parallel
$ conda install -c mvdbeek ucsc_tools
** conda-develop -n 
    
    
     /demo/softwares/vep/Plugins/

$ conda install -c r r-optparse
$ conda install -c r r-dplyr
$ conda install -c r r-plyr
$ conda install -c r r-data.table
$ conda install -c aakumar r-readbulk
$ conda install -c bioconda ensembl-vep=100.4
$ vep_install -a cf -s homo_sapiens -y GRCh37 -c 
     
      /demo/softwares/vep/grch37 --CONVERT
$ vep_install -a cf -s homo_sapiens -y GRCh38 -c 
      
       /demo/softwares/vep/grch38 --CONVERT

      
     
    
   

Data directory and datasets

Default datasets provided
1. exac_pli: demo/resources/gnomad/grch37/gnomad.v2.1.1.lof_metrics.by_transcript_forVEP.txt
2. ensembl: demo/resources/ensembl/grch37/ensBioMart_grch37_v98_ENST_lengths_191208.txt
3. region-exons: demo/resources/regions/grch37/hg19_refseq_ensembl_exons_50bp_allMT_hgmd_clinvar_20200519.txt
4. region-pseudo-autosomal: demo/resources/regions/grch37/hg19_non_pseudoautosomal_regions_X.txt
5. HPO: demo/resources/hpo/phenotype_to_genes.tar.gz
Other datasets that require no entry to user-configuration file
6. Curated: 
	6.1. Genelist: demo/resources/curated/NGC_genelist_allNamesOnly-20200519.txt
	6.2. Somatic mosaicism genes: demo/resources/curated/haem_somatic_mosaicism_genes_20191015.txt
	6.3. Imprinted gene list: demo/resources/curated/imprinted_genes_20200424.txt
	6.4. Polymorphic gene list: demo/resources/curated/polymorphic_genes_20200509.txt
7. OMIM: demo/resources/omim/omim_20200421_geneInfoBase.txt

Download link for following dataset and place them in corresponding directories as shown

' | awk -v OFS="\t" '{ if(/^#/){ print }else{ print $1,$2,$3,$4,$5,$6,$7,"ID="$3";"$8 } }' | bgzip -c > hgmd_pro_2019.4_hg19_wID.vcf.gz $ bcftools index -t hgmd_pro_2019.4_hg19_wID.vcf.gz $ bcftools index hgmd_pro_2019.4_hg19_wID.vcf.gz Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz Edit the user config flat file CONFIG/UserConfig.txt : hgmd=hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz 8. CLINVAR: Download link: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz.tbi Put it in this directory: demo/resources/clinvar/grch37/clinvar_20200506.vcf.gz Edit the user config flat file CONFIG/UserConfig.txt : clinvar=clinvar/grch37/clinvar_20200506.vcf.gz ">
1. HPO: Extract HPO phenotypes mapping:
	$ cd 
   
    /demo/resources/hpo/
	$ tar -zxvf phenotypes_to_genes.tar.gz 

2. REFERENCE SEQUENCE GENOME (FASTA file alongwith Index)
	Download link: https://drive.google.com/drive/folders/1Ro3pEYhVdYkMmteSr8YRPFeTvb_K0lVf?usp=sharing
	Download file: Homo_sapiens.GRCh37.74.dna.fasta
		Get the corresponding index and dict files: *.fai and *.dict
	Put this in folder: demo/resources/genomes/grch37/Homo_sapiens.GRCh37.74.dna.fasta

3. GNOMAD
	Download link (use wget): 
	Genomes: https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/genomes/gnomad.genomes.r2.1.1.sites.vcf.bgz
	Exomes: https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
	Put it in this folder: 
		demo/resources/gnomad/grch37/gnomad.genomes.r2.1.1.sites.vcf.bgz
		demo/resources/gnomad/grch37/gnomad.exomes.r2.1.1.sites.vcf.bgz
	Edit User config flat file CONFIG/UserConfig.txt : 
		gnomad_g=gnomad/grch37/gnomad.genomes.r2.1.1.sites.vcf.bgz
		gnomad_e=gnomad/grch37/gnomad.exomes.r2.1.1.sites.vcf.bgz

4. ExAC:
	Download Link: https://drive.google.com/drive/folders/11Ya8XfAxOYmlKZ9mN8A16IDTLHdHba_0?usp=sharing
	Download file: ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
		also the index files (*.csi and *.tbi)
	Put it in this folder as: 
		demo/resources/exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
	Edit User config flat file CONFIG/UserConfig.txt : 
		exac=exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
		exac_t=exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz

5. CADD:
	Download link (use wget):
		https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/whole_genome_SNVs.tsv.gz
		https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/InDels.tsv.gz
		(Also download the corresponding tabix index files as well)
	Put it in this directory: 
		demo/resources/cadd/grch37/whole_genome_SNVs.tsv.gz
		demo/resource/cadd/grch37/InDels.tsv.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		cadd_snv=cadd/grch37/whole_genome_SNVs.tsv.gz
		cadd_indel=cadd/grch37/InDels.tsv.gz

6. REVEL:
	Download link: https://drive.google.com/drive/folders/12Tl1YU5bI-By_VawTPVWHef7AXzn4LuP?usp=sharing
	Download file: new_tabbed_revel.tsv.gz
	         Also the index file: *.tbi
	Put it in this directory: demo/resources/revel/grch37/new_tabbed_revel.tsv.gz
	Edit the user config flat file CONFIG/UserConfig.txt : 
		revel=revel/grch37/new_tabbed_revel.tsv.gz

7. HGMD:
	Download link: http://www.hgmd.cf.ac.uk/ac/index.php (Require personal access login)
	Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19.vcf

	Use this command to process HGMD file inside this directory:
		$ cat hgmd_pro_2019.4_hg19.vcf | sed '/##comment=.*\"/a  ##INFO=
    
     ' | awk -v OFS="\t" '{ if(/^#/){ print }else{ print $1,$2,$3,$4,$5,$6,$7,"ID="$3";"$8 } }' | bgzip -c  > hgmd_pro_2019.4_hg19_wID.vcf.gz
		$ bcftools index -t hgmd_pro_2019.4_hg19_wID.vcf.gz
		$ bcftools index hgmd_pro_2019.4_hg19_wID.vcf.gz	

	Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		hgmd=hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz

8. CLINVAR:
	Download link: 
		https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz
		https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz.tbi
	Put it in this directory: demo/resources/clinvar/grch37/clinvar_20200506.vcf.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		clinvar=clinvar/grch37/clinvar_20200506.vcf.gz

    
   
Customized Curated Annotation sets
Default present with this distribution. Can be found in XML file with these tags:
	(1) GeneList: 
   
    
	(2) Somatic mosaicism genes: 
    
     
	(3) Imprinted genes: 
     
      
	(4) Polymorphic genes: 
      
       
	(5) HPO terms: 
       
         (6) OMIM: 
         
        
       
      
     
    
   

Activate the conda environment

$ source activate snv

Step - 1:

1. Edit CONFIG/UserConfig.txt: 
	(a) Add the absolute path prefix for the resources directory with tag: resourceDir. 
	    An example can be seen in CONFIG/Example-UserConfig.txt file.
	(b) Manually check if datasets corresponding to other field tags are correctly downloaded and 
	    put in respective folders.
2. Create user defined XML file from input User Configuration flat file and Base-XML file
Command:
$ python createAnalysisXML.py -u 
   
     
		    	      -b 
    
      
		              -o 
     

     
    
   
Example:
$ python createAnalysisXML.py -u CONFIG/UserConfig.txt 
		       	      -b CONFIG/Analysis_base_grch37.xml 
		              -o CONFIG/Analysis_user_grch37.xml
Outputs:
CONFIG/Analysis_user_grch37.xml

Step-2:

1. Put the respective vcf files in the directory. For example: demo/example/vcf/ 
2. Create manifest file in same format as shown in demo/example/example_manifest.txt
3. Assign gender to each family members (illumina or sample id). For example: demo/example/example_genders.txt
4. List of all the family ids that needed to be analyzed.
         For e.g: demo/example/manifest/example_family_analysis.txt

Step -3:

Generate all the shell scripts that can be incorporated into user specific HPC cluster network. For e.g: Slurm/PBS/LSF network.

Command:
$ python processSNV.py 	-a 
   
    
	    		-p 
    
     
	      		-m 
     
      
	     		-e 
      
       
			-w 
       
         -g 
        
          -d 
         
           -f 
          
            -s 
           
             -r 
             
            
           
          
         
        
       
      
     
    
   
Example:
$ python processSNV.py 	-a CONFIG/Analysis_user_grch37.xml \ 
			-p 20210326 \
			-m 
   
    /demo/example/example_manifest.txt \
			-e gvcfGT \
			-w 
    
     /demo/example/ \
			-g 
     
      /demo/example/example_genders.txt \
			-d 
      
       /demo/example/exeter_samples_norm.fof \
			-f 
       
        /demo/example/manifest/example_family_analysis.txt \ -s 
        
         /demo/example/manifest/example_family.fof \ -r 
         
          /demo/example/manifest/example_family_header.txt (optional) 
         
        
       
      
     
    
   
Outputs:
Two scripts in the directory: 
   
    /demo/example/20210326/tmp_binaries/
Launch the scripts in these 2 stages sequentially after each of them gets finished.

   (1) genotypeAndAnnotate_chr%.sh where %=1..22,X,Y and MT
	scatter the annotation and frequency filtering per chromosome for all families.
   (2) mergeAndFilter.sh:
	Merge all the chromosome and apply inheritance filtering.

   

Step-4

Final output of list of filtered variant is present in:

   
    /demo/example/20210326/fam_filter/
    
     /
     
      .filt_
      
       .txt

      
     
    
   
For any questions/issues/bugs please mail us at:
Owner
East Genomics
Bringing together genomic medicine across the East Midlands and East of England
East Genomics
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
This is a python script to navigate and extract the FSD50K dataset

FSD50K navigator This is a script I use to navigate the sound dataset from FSK50K.

sweemeng 2 Nov 23, 2021
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022