2019 Data Science Bowl

Overview

2019 Data Science Bowl

Uncover the factors to help measure how young children learn

Screenshot

Ignite Possibilities.

Uncover new insights in early childhood education and how media can support learning outcomes. Participate in our fifth annual Data Science Bowl, presented by Booz Allen Hamilton and Kaggle.

PBS KIDS, a trusted name in early childhood education for decades, aims to gain insights into how media can help children learn important skills for success in school and life. In this challenge, you’ll use anonymous gameplay data, including knowledge of videos watched and games played, from the PBS KIDS Measure Up! app, a game-based learning tool developed as a part of the CPB-PBS Ready To Learn Initiative with funding from the U.S. Department of Education. Competitors will be challenged to predict scores on in-game assessments and create an algorithm that will lead to better-designed games and improved learning outcomes. Your solutions will aid in discovering important relationships between engagement with high-quality educational media and learning processes.

Data Science Bowl is the world’s largest data science competition focused on social good. Each year, this competition gives Kagglers a chance to use their passion to change the world. Over the last four years, more than 50,000+ Kagglers have submitted over 114,000+ submissions, to improve everything from lung cancer and heart disease detection to ocean health.

For more information on the Data Science Bowl, please visit www.DataScienceBowl.com

Where does the data for the competition come from?

The data used in this competition is anonymous, tabular data of interactions with the PBS KIDS Measure Up! app. Select data, such as a user’s in-app assessment score or their path through the game, is collected by the PBS KIDS Measure Up! app, a game-based learning tool.

PBS KIDS is committed to creating a safe and secure environment that family members of all ages can enjoy. The PBS KIDS Measure Up! app does not collect any personally identifying information, such as name or location. All of the data used in the competition is anonymous. To view the full PBS KIDS privacy policy, please visit: pbskids.org/privacy.

No one will be able to download the entire data set and the participants do not have access to any personally identifiable information about individual users. The Data Science Bowl and the use of data for this year’s competition has been reviewed to ensure that it meets requirements of applicable child privacy regulations by PRIVO, a leading global industry expert in children’s online privacy.

What is the PBS KIDS Measure Up! app?

Screenshot

In the PBS KIDS Measure Up! app, children ages 3 to 5 learn early STEM concepts focused on length, width, capacity, and weight while going on an adventure through Treetop City, Magma Peak, and Crystal Caves. Joined by their favorite PBS KIDS characters, children can also collect rewards and unlock digital toys as they play. To learn more about PBS KIDS Measure Up!, please click here.

PBS KIDS and the PBS KIDS Logo are registered trademarks of PBS. Used with permission. The contents of PBS KIDS Measure Up! were developed under a grant from the Department of Education. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. The app is funded by a Ready To Learn grant (PR/AWARD No. U295A150003, CFDA No. 84.295A) provided by the Department of Education to the Corporation for Public Broadcasting.

My Solution 460 Features | Simple | Easy | Less_overfit | Fast

Screenshot

Simple, easy and fast and less overfitting solution with 460 features

This notebook shows problem solving approach using LightGBM Regression and 890 features computed by bruno aquino in the following notebook which are later reduced to 460 features in my approach.

https://www.kaggle.com/braquino/890-features

It also uses the regression coefficients from following notebook by artgor.

https://www.kaggle.com/artgor/quick-and-dirty-regression

Apart from these i also have included resultant LightGBM parameters from exhaustive parameter tuning.

If you find this notebook helpful please press that thumbs up button and thank you :)

PLEASE NOTE THIS IMPORTANT POINT "DON'T BELIEVE IN PUBLIC LB" IT'S ONLY 14% of real data that's private!! We should build a model that's less overfittig and still finding the good results."

Your score will be different for different submissions that's because of randomness in gradient boosting! and that's completely normal you must focus on reducing overfitting, gather as much data as possible and ofcourse reduce the number of features as much as possible without sacrificing model validation score and that's exactly what i've done below :)

Thank you!

Owner
Deepak Nandwani
A Machine Learning and Data Science Engineer, my goal is to make a +ve impact on millions of people's daily lives & to be hyper-optimistic about the future.
Deepak Nandwani
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022