A forecasting system dedicated to smart city data

Overview

smart-city-predictions

System prognostyczny dedykowany dla danych inteligentnych miast

Praca inżynierska realizowana przez Michała Stawikowskiego and Witolda Merkela

Abstrakt

Celem pracy było zaprojektowanie i realizacja systemu informatycznego, który wykorzy-stuje środowiska składowania i przetwarzania danych wielkoskalowych (ang. Big Data) dopozyskiwania strumieni danych z inteligentnych miast (ang. Smart City) oraz metody uczeniamaszynowego do prognozowania na podstawie tych danych. System powinien mieć otwartąarchitekturę, która umożliwia dołączanie nowych źródeł danych oraz dołączanie nowychkomponentów, które tworzą zbiory uczące i testowe na potrzeby uczenia modeli klasyfikacyjnychi regresyjnych oraz wykonują prognozy z użyciem tych modeli. Postawione cele zostały zreali-zowane. W ramach systemu zostały zaimplementowane przykładowe komponenty pozyskiwaniadanych z różnych źródeł danych oraz ich składowanie, wykorzystujące uznane platformy BigData. Dodatkowo zostały stworzone przykładowe komponenty, które na podstawie zgroma-dzonych danych wykonują proces uczenia modeli klasyfikacyjnych i regresyjnych, a następniewyznaczają i udostępniają prognozowane wartości oraz statystyki uczenia modeli. W celuprezentacji informacji oraz wyników działania systemu zaimplementowano graficzny interfejsużytkownika. Na pracę składa się dogłębna analiza problemu, przedstawienie procesu projekto-wania systemu, opis działania stworzonych modułów, a także dokładna dokumentacja techniczna.

Przewodnik po repozytorium

  • data_for_ml - folder zawierający podstawowe operacje na danych. Funkcje zawarte w tym folderze służą przygotowaniu danych do uczenia maszynowego.
  • flask-with-auth - folder zawierający część aplikacji odpowiedzialną na graficzny interfejs użytkownika. Tutaj znajduje się baza danych użytkowników, kody .html, .css i .js odpowiedzialne za zarzadzanie poszczególnymi stronami oraz serwer w Flask.
  • flow_authomatization - folder zawierający funkcje odpowiedzialne za zarządzanie procesem trenowania modeli uczenia maszynowego oraz predykcji.
  • nifi - folder zawierający schematy wykorzystywanych przepływów w Apache NiFi.
  • spark_ml - zawiera funkcje tworzące modele regresyjne jak i klasyfikatory oraz dokunujące predykcji.
  • speed_layer - zawiera funkcje zarządzające przetwarzaniem strumieniowym oraz zapisem predykcji do Apache Cassandra.
Owner
Kevin Lai
Kevin Lai
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Churn prediction with PySpark

It is expected to develop a machine learning model that can predict customers who will leave the company.

3 Aug 13, 2021
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022