InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

Overview

CRISPRanalysis

InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

In this work, we present a workflow to analyze InDels from the multicopy α-gliadin gene family from wheat based on NGS data without the need to pre-viously establish a reference sequence for each genetic background. The pipeline was tested it in a multiple sample set, including three generations of edited wheat lines (T0, T1, and T2), from three different backgrounds and ploidy levels (hexaploid and tetraploid). Implementation of Bayesian optimization of Usearch parameters, inhouse Python, and bash scripts are reported.

Workflow:

Step1:

Bayesian optimization was implemented to optimize Usearch v9.2.64 parameters from merge to search steps for the α-gliadin amplicons on the wild type lines.

python Step1_Bayesian_usearch.py --database 
   
     --file_intervals 
    
      --trim_primers 
     
       --path_usearch_control 
      

      
     
    
   


Help:

Argument Help
--database File fasta with database sequences. Example: /path/to/database/database.fasta.
--file_intervals File with intervals for parameters. Example in /Examples/Example_intervals.txt.
--trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.
--path_usearch_control Path of usearch and control raw data separated by "," without white spaces. Example: /paht/to/usearch,/path/to/reads_control.


Outputs:

  • Bayesian_usearch.txt File with optimal values, optimal function value, samples or observations, obatained values and search space.
  • Bayesian.png Convergence plot.
  • Bayesian_data_res.txt File with the minf(x) after n calls in each iteration.

Step 2:

Usearch pipeline optimazed on wild type lines for studying results of optimization.

Step2_usearch_WT_to_DB.sh dif pct maxee amp id path_control name_dir_usearch path_database trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_control Path of the wild type lines fastq files.
  • name_dir_usearch Path of Usearch.
  • path_database Path of alpha-gliadin amplicon database.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicons file, unique denoised amplicon (Amp/otu) file, otu table file.

Step 3:

Usearch pipeline optimazed on all lines (wild types and CRISPR lines) for studying denoised unique amplicon relative abundances.

Step3_usearch_ALL_LINES.sh dif pct maxee amp id path_ALL name_dir_usearch trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_ALL Path of all lines (wild type and CRISPR lines) fastq files.
  • name_dir_usearch Path of Usearch.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicon file, unique denoised amplicon (Amp/otu) file, otu table file.

Before Step 4, otu table file must be normalized by TMM normalization method (edgeR package in R). Results of TMM normalized unique denoised amplicons table can be represented as heatmaps. Unique denoised amplicons can be compared between them to detect Insertions and Deletions (InDels) in CRISPR lines.

Step 4:

Create tables with the presence or absence of unique denoised amplicons in each CRISPR line compared to the wild type lines.

python Step4_usearch_to_table.py --file_otu 
   
     --file_group 
    
      --prefix_output 
     
       --genotype 
      

      
     
    
   


Help:

Argument Help
--file_otu File of TMM normalized otu_table from usearch. Remove "#OTU" from the first line.
--file_group Path to file of genotypes in wild type and CRISPR lines. Example in /Examples/Example_groups.txt.
--prefix_output Prefix to output name. Example: if you are working with BW208 groups: BW.
--genotype Genotype name. Example: if you are working with BW208 groups: BW208.

Default threshold 0.3 % of frequency of each unique denoised amplicon (Amp) in each line.


Outputs:

Substitute "name" in output names for the prefix_output string.

  • Amptable_frequency.txt Table of Amps (otus) transformed to frequencies for apply the threshold.
  • Amptable_brutes_name.txt Table with number of reads contained in the unique denoised amplicons (Amps) present in each line.
  • Amps_name.txt Table with number of unique denoised amplicons (Amps) in each line.

Python 3.6 or later is required.

PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
A columnar data container that can be compressed.

Unmaintained Package Notice Unfortunately, and due to lack of resources, the Blosc Development Team is unable to maintain this package anymore. During

944 Dec 09, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Functional tensors for probabilistic programming

Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.

208 Dec 29, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022