PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

Related tags

Deep Learningperffuzz
Overview

PerfFuzz

Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how can we find these inputs in the first place? PerfFuzz can generate such inputs automatically: given a program and at least one seed input, PerfFuzz automatically generates inputs that exercise pathological behavior across program locations, without any domain knowledge.

PerfFuzz uses multi-dimensional performance feedback and independently maximizes execution counts for all program locations. This enables PerfFuzz to find a variety of inputs that exercise distinct hot spots in a program.

Read the ISSTA paper for more details.

Built by Caroline Lemieux ([email protected]) and Rohan Padhye ([email protected]) on top of Michal Zalewski's ([email protected]) AFL.

Building PerfFuzz

To build on *nix machines, run

make

in the perffuzz directory. Since PerfFuzz is built on AFL, it will not build on Windows machines. You will also need to build PerfFuzz's instrumenting compiler, which can be done by running

cd llvm_mode
make
cd ..

in the perffuzz directory, after having built PerfFuzz.

  • Q: What version of clang should I use?

  • A: PerfFuzz was evaluated with clang-3.8.0 on Linux and works with verison 8 on Mac. To experiment with different clang/LLVM version, add the bin/ directory from the pre-build clang archives to the front of your PATH when compiling.

  • Q: I'm getting an error involving the -fno-rtti option.

  • A: If you're on Redhat Linux, this may be a gcc/clang compatibility issue. Apparently gcc-4.7 fixes the issue.

Test PerfFuzz on Insertion Sort

To check whether PerfFuzz is working correctly, try running it on the insertion sort benchmark provided. The following commands assume you are in the PerfFuzz directory.

Build

First, compile the benchmark:

./afl-clang-fast insertion-sort.c -o isort

Run PerfFuzz

Let's make some seeds for PerfFuzz to start with:

mkdir isort-seeds
head -c 64 /dev/zero > isort-seeds/zeroes

Now we can run PerfFuzz:

./afl-fuzz -p -i isort-seeds -o isort_perf_test/ -N 64 ./isort @@

You should see the number of total paths (this is a misnomer; it's just the number of saved inputs) increase consistently. You can also check to see if the saved inputs are heading towards a worst-case by running

for i in isort_perf_test/queue/id*; do ./isort $i | grep comps; done

(which, for each saved input, plots the number of comparisons insertion sort performed while sorting that input)

For comparison with the performance compared to regular afl, you can run: ./afl-fuzz -i isort-seeds -o isort_afl_test/ -N 64 ./isort @@ without the -p option, this should just run regular AFL. You should see total_paths quickly topping out around ~20 or so, and the number of cycles increase a lot. There will probably be much fewer comparisons performed for the saved inputs as well. The highest number of comparisons printed when you run:

for i in isort_afl_test/queue/id*; do ./isort $i | grep comps; done

should be smaller than what you saw for the inputs in isort_perf_test/queue.

Running PerfFuzz on a program of your choice

Compile your program with PerfFuzz

To compile your C/C++ program with perffuzz, replace CC (resp. CXX) with path/to/perffuzz/afl-clang-fast (resp. path/to/perffuzz/afl-clang-fast++) in your build process. See section (3) of README (not README.md) for more details, replacing references of path/to/afl/afl-gcc with path/to/perffuzz/afl-clang-fast.

  • Q: afl-clang-fast doesn't exist!
  • A: make sure you ran make in the llvm_mode directory (see "Building PerfFuzz")

Run PerfFuzz on your program.

In short, follow the instructions in README (regular AFL readme) section 6, but add the -p option to enable PerfFuzz, and the -N num option to restrict the size of produced inputs to a maximum file size of num. Make sure your initial seed inputs (in the input directory) are of smaller size than num bytes!

On many programs (including the benchmarks in the paper), the -d option (Fidgety mode) offers better performance.

Let PerfFuzz run for as long as you like: we ran for a few hours on larger benchmarks.

Interpret PerfFuzz results.

In the queue directory of the ouput directory, inputs postfixed with +max were saved because the maximized a performance key.

We provide some tools to help analyze the results. Notably, afl-showmax can print:

  1. The total path length (default)
  2. The maximum hotspot (-x option)
  3. The entire performance map in a key:value format (-a option)

To build afl-showmax, run

make afl-showmax

in the PerfFuzz directory.

You might also like...
This repository contains the code for the paper
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model training, like the model indices and unexpected interrupts. Then you can do something in time for your work.

An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Comments
  • test of llvm_mode fails

    test of llvm_mode fails

    Hi,

    On a recent Arch Linux, when building llvm_mode, I'm getting:

    [email protected]:llvm_mode$ make
    [*] Checking for working 'llvm-config'...
    [*] Checking for working 'clang'...
    [*] Checking for '../afl-showmap'...
    [+] All set and ready to build.
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  afl-clang-fast.c -o ../afl-clang-fast 
    ln -sf afl-clang-fast ../afl-clang-fast++
    clang++ `llvm-config --cxxflags` -fno-rtti -fpic -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DVERSION=\"2.52b\" -Wno-variadic-macros -shared afl-llvm-pass.so.cc -o ../afl-llvm-pass.so `llvm-config --ldflags` 
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  -fPIC -shared afl-catch-dlclose.so.c -o ../afl-catch-dlclose.so
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  -fPIC -c afl-llvm-rt.o.c -o ../afl-llvm-rt.o
    afl-llvm-rt.o.c:99:20: warning: incompatible pointer types assigning to 'u32 *' (aka 'unsigned int *') from 'u8 *' (aka 'unsigned char *') [-Wincompatible-pointer-types]
        __afl_perf_ptr = &__afl_area_ptr[MAP_SIZE];
                       ^ ~~~~~~~~~~~~~~~~~~~~~~~~~
    1 warning generated.
    [*] Building 32-bit variant of the runtime (-m32)... success!
    [*] Building 64-bit variant of the runtime (-m64)... success!
    [*] Testing the CC wrapper and instrumentation output...
    unset AFL_USE_ASAN AFL_USE_MSAN AFL_INST_RATIO; AFL_QUIET=1 AFL_PATH=. AFL_CC=clang ../afl-clang-fast -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  ../test-instr.c -o test-instr 
    echo 0 | ../afl-showmap -m none -q -o .test-instr0 ./test-instr
    echo 1 | ../afl-showmap -m none -q -o .test-instr1 ./test-instr
    
    Oops, the instrumentation does not seem to be behaving correctly!
    
    Please ping <[email protected]> to troubleshoot the issue.
    
    make: *** [Makefile:105: test_build] Error 1**
    

    It was a full normal compile, so I'm a bit confused. Is the test incorrectly set up for perffuzz and hasn't been changed/fixed?

    opened by msoos 7
  • Prioritize maximizing values with more granularity

    Prioritize maximizing values with more granularity

    Some values in the key: value map may be more worth increasing than others (either more interesteing, or others may just not increase). Two ideas:

    1. Favour based on the key achieving maximum value (similar to afl-rb's minimizing branch hits)
    2. Favour based on whether value is actually increasing.
    opened by carolemieux 3
  • What is Perf_Mask in the instrumentation pass?

    What is Perf_Mask in the instrumentation pass?

    Hey, I am trying to do some thing new on PerfFuzz. But there is one thing in the code I am confused.

    What is the purpose of this Perf_Mask? https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L129

    I don't think it is correct to add Perf_Mask to Edge_Id to create a GEP instruction in PerfBranchPtr https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L176 https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L177

    However, EdgeId % PERF_SIZE is acctually needed to index the perf map.

    Looking forward to your reply, thanks.

    opened by zhanggenex 1
  • Rename staleness

    Rename staleness

    Find a new name for staleness which is either (1) more intuitive or (2) involves the use of the word "gradient".

    Suggestions What we currently use as staleness is really the inverse of what all these things could be...

    • magnitude-agnostic gradient
    • increase gradient
    • binary gradient
    opened by carolemieux 0
Releases(1.0)
Owner
Caroline Lemieux
Caroline Lemieux
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022