An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Related tags

Deep LearningUformer
Overview

Uformer: A General U-Shaped Transformer for Image Restoration

Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu

PWC PWC

Paper: https://arxiv.org/abs/2106.03106

Update:

  • 2021.08.19 Release a pre-trained model(Uformer32)! Add a script for FLOP/GMAC calculation.
  • 2021.07.29 Add a script for testing the pre-trained model on the arbitrary-resolution images.

In this paper, we present Uformer, an effective and efficient Transformer-based architecture, in which we build a hierarchical encoder-decoder network using the Transformer block for image restoration. Uformer has two core designs to make it suitable for this task. The first key element is a local-enhanced window Transformer block, where we use non-overlapping window-based self-attention to reduce the computational requirement and employ the depth-wise convolution in the feed-forward network to further improve its potential for capturing local context. The second key element is that we explore three skip-connection schemes to effectively deliver information from the encoder to the decoder. Powered by these two designs, Uformer enjoys a high capability for capturing useful dependencies for image restoration. Extensive experiments on several image restoration tasks demonstrate the superiority of Uformer, including image denoising, deraining, deblurring and demoireing. We expect that our work will encourage further research to explore Transformer-based architectures for low-level vision tasks.

Uformer

Details

Package dependencies

The project is built with PyTorch 1.7.1, Python3.7, CUDA10.1. For package dependencies, you can install them by:

pip3 install -r requirements.txt

Pretrained model

Data preparation

Denoising

For training data of SIDD, you can download the SIDD-Medium dataset from the official url. Then generate training patches for training by:

python3 generate_patches_SIDD.py --src_dir ../SIDD_Medium_Srgb/Data --tar_dir ../datasets/denoising/sidd/train

For evaluation, we use the same evaluation data as here, and put it into the dir ../datasets/denoising/sidd/val.

Training

Denoising

To train Uformer32(embed_dim=32) on SIDD, we use 2 V100 GPUs and run for 250 epochs:

python3 ./train.py --arch Uformer --batch_size 32 --gpu '0,1' \
    --train_ps 128 --train_dir ../datasets/denoising/sidd/train --env 32_0705_1 \
    --val_dir ../datasets/denoising/sidd/val --embed_dim 32 --warmup

More configuration can be founded in train.sh.

Evaluation

Denoising

To evaluate Uformer32 on SIDD, you can run:

python3 ./test.py --arch Uformer --batch_size 1 --gpu '0' \
    --input_dir ../datasets/denoising/sidd/val --result_dir YOUR_RESULT_DIR \
    --weights YOUR_PRETRAINED_MODEL_PATH --embed_dim 32 

Computational Cost

We provide a simple script to calculate the flops by ourselves, a simple script has been added in model.py. You can change the configuration and run it via:

python3 model.py

The manual calculation of GMacs in this repo differs slightly from the main paper, but they do not influence the conclusion. We will correct the paper later.

Citation

If you find this project useful in your research, please consider citing:

@article{wang2021uformer,
	title={Uformer: A General U-Shaped Transformer for Image Restoration},
	author={Wang, Zhendong and Cun, Xiaodong and Bao, Jianmin and Liu, Jianzhuang},
	journal={arXiv preprint 2106.03106},
	year={2021}
}

Acknowledgement

This code borrows heavily from MIRNet and SwinTransformer.

Contact

Please contact us if there is any question or suggestion(Zhendong Wang [email protected], Xiaodong Cun [email protected]).

Owner
Zhendong Wang
Deep learning, Computer Vision, Low-level Vision, Image Generation.
Zhendong Wang
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Alex Pashevich 62 Dec 24, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022