An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Related tags

Deep LearningUformer
Overview

Uformer: A General U-Shaped Transformer for Image Restoration

Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu

PWC PWC

Paper: https://arxiv.org/abs/2106.03106

Update:

  • 2021.08.19 Release a pre-trained model(Uformer32)! Add a script for FLOP/GMAC calculation.
  • 2021.07.29 Add a script for testing the pre-trained model on the arbitrary-resolution images.

In this paper, we present Uformer, an effective and efficient Transformer-based architecture, in which we build a hierarchical encoder-decoder network using the Transformer block for image restoration. Uformer has two core designs to make it suitable for this task. The first key element is a local-enhanced window Transformer block, where we use non-overlapping window-based self-attention to reduce the computational requirement and employ the depth-wise convolution in the feed-forward network to further improve its potential for capturing local context. The second key element is that we explore three skip-connection schemes to effectively deliver information from the encoder to the decoder. Powered by these two designs, Uformer enjoys a high capability for capturing useful dependencies for image restoration. Extensive experiments on several image restoration tasks demonstrate the superiority of Uformer, including image denoising, deraining, deblurring and demoireing. We expect that our work will encourage further research to explore Transformer-based architectures for low-level vision tasks.

Uformer

Details

Package dependencies

The project is built with PyTorch 1.7.1, Python3.7, CUDA10.1. For package dependencies, you can install them by:

pip3 install -r requirements.txt

Pretrained model

Data preparation

Denoising

For training data of SIDD, you can download the SIDD-Medium dataset from the official url. Then generate training patches for training by:

python3 generate_patches_SIDD.py --src_dir ../SIDD_Medium_Srgb/Data --tar_dir ../datasets/denoising/sidd/train

For evaluation, we use the same evaluation data as here, and put it into the dir ../datasets/denoising/sidd/val.

Training

Denoising

To train Uformer32(embed_dim=32) on SIDD, we use 2 V100 GPUs and run for 250 epochs:

python3 ./train.py --arch Uformer --batch_size 32 --gpu '0,1' \
    --train_ps 128 --train_dir ../datasets/denoising/sidd/train --env 32_0705_1 \
    --val_dir ../datasets/denoising/sidd/val --embed_dim 32 --warmup

More configuration can be founded in train.sh.

Evaluation

Denoising

To evaluate Uformer32 on SIDD, you can run:

python3 ./test.py --arch Uformer --batch_size 1 --gpu '0' \
    --input_dir ../datasets/denoising/sidd/val --result_dir YOUR_RESULT_DIR \
    --weights YOUR_PRETRAINED_MODEL_PATH --embed_dim 32 

Computational Cost

We provide a simple script to calculate the flops by ourselves, a simple script has been added in model.py. You can change the configuration and run it via:

python3 model.py

The manual calculation of GMacs in this repo differs slightly from the main paper, but they do not influence the conclusion. We will correct the paper later.

Citation

If you find this project useful in your research, please consider citing:

@article{wang2021uformer,
	title={Uformer: A General U-Shaped Transformer for Image Restoration},
	author={Wang, Zhendong and Cun, Xiaodong and Bao, Jianmin and Liu, Jianzhuang},
	journal={arXiv preprint 2106.03106},
	year={2021}
}

Acknowledgement

This code borrows heavily from MIRNet and SwinTransformer.

Contact

Please contact us if there is any question or suggestion(Zhendong Wang [email protected], Xiaodong Cun [email protected]).

Owner
Zhendong Wang
Deep learning, Computer Vision, Low-level Vision, Image Generation.
Zhendong Wang
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023