git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Related tags

Deep Learningattattr
Overview

Self-Attention Attribution

This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Interactions Inside Transformer. It includes the code for generating the self-attention attribution score, pruning attention heads with our method, constructing the attribution tree and extracting the adversarial triggers. All of our experiments are conducted on bert-base-cased model, our methods can also be easily transfered to other Transformer-based models.

Requirements

  • Python version >= 3.5
  • Pytorch version == 1.1.0
  • networkx == 2.3

We recommend you to run the code using the docker under Linux:

docker run -it --rm --runtime=nvidia --ipc=host --privileged pytorch/pytorch:1.1.0-cuda10.0-cudnn7.5-devel bash

Then install the following packages with pip:

pip install --user networkx==2.3
pip install --user matplotlib==3.1.0
pip install --user tensorboardX six numpy tqdm scikit-learn

You can install attattr from source:

git clone https://github.com/YRdddream/attattr
cd attattr
pip install --user --editable .

Download Pre-Finetuned Models and Datasets

Before running self-attention attribution, you can first fine-tune bert-base-cased model on a downstream task (such as MNLI) by running the file run_classifier_orig.py. We also provide the example datasets and the pre-finetuned checkpoints at Google Drive.

Get Self-Attention Attribution Scores

Run the following command to get the self-attention attribution score and the self-attention score.

python examples/generate_attrscore.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 \
       --model_file ${model_file} --example_index ${example_index} \
       --get_att_attr --get_att_score --output_dir ${output_dir}

Construction of Attribution Tree

When you get the self-attribution scores of a target example, you could construct the attribution tree. We recommend you to run the file get_tokens_and_pred.py to summarize the data, or you can manually change the value of tokens in attribution_tree.py.

python examples/attribution_tree.py --attr_file ${attr_file} --tokens_file ${tokens_file} \
       --task_name ${task_name} --example_index ${example_index} 

You can generate the attribution tree from the provided example.

python examples/attribution_tree.py --attr_file ${model_and_data}/mnli_example/attr_zero_base_exp16.json \
       --tokens_file ${model_and_data}/mnli_example/tokens_and_pred_100.json \
       --task_name mnli --example_index 16

Self-Attention Head Pruning

We provide the code of pruning attention heads with both our attribution method and the Taylor expansion method. Pruning heads with our method.

python examples/prune_head_with_attr.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Pruning heads with Taylor expansion method.

python examples/prune_head_with_taylor.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Adversarial Attack

First extract the most important connections from the training dataset.

python examples/run_adver_connection.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 --zero_baseline \
       --model_file ${model_file} --output_dir ${output_dir}

Then use these adversarial triggers to attack the original model.

python examples/run_adver_evaluate.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file} \
       --output_dir ${output_dir} --pattern_file ${pattern_file}

Reference

If you find this repository useful for your work, you can cite the paper:

@inproceedings{attattr,
  author = {Yaru Hao and Li Dong and Furu Wei and Ke Xu},
  title = {Self-Attention Attribution: Interpreting Information Interactions Inside Transformer},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence},
  publisher = {{AAAI} Press},
  year      = {2021},
  url       = {https://arxiv.org/pdf/2004.11207.pdf}
}
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022