git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Related tags

Deep Learningattattr
Overview

Self-Attention Attribution

This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Interactions Inside Transformer. It includes the code for generating the self-attention attribution score, pruning attention heads with our method, constructing the attribution tree and extracting the adversarial triggers. All of our experiments are conducted on bert-base-cased model, our methods can also be easily transfered to other Transformer-based models.

Requirements

  • Python version >= 3.5
  • Pytorch version == 1.1.0
  • networkx == 2.3

We recommend you to run the code using the docker under Linux:

docker run -it --rm --runtime=nvidia --ipc=host --privileged pytorch/pytorch:1.1.0-cuda10.0-cudnn7.5-devel bash

Then install the following packages with pip:

pip install --user networkx==2.3
pip install --user matplotlib==3.1.0
pip install --user tensorboardX six numpy tqdm scikit-learn

You can install attattr from source:

git clone https://github.com/YRdddream/attattr
cd attattr
pip install --user --editable .

Download Pre-Finetuned Models and Datasets

Before running self-attention attribution, you can first fine-tune bert-base-cased model on a downstream task (such as MNLI) by running the file run_classifier_orig.py. We also provide the example datasets and the pre-finetuned checkpoints at Google Drive.

Get Self-Attention Attribution Scores

Run the following command to get the self-attention attribution score and the self-attention score.

python examples/generate_attrscore.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 \
       --model_file ${model_file} --example_index ${example_index} \
       --get_att_attr --get_att_score --output_dir ${output_dir}

Construction of Attribution Tree

When you get the self-attribution scores of a target example, you could construct the attribution tree. We recommend you to run the file get_tokens_and_pred.py to summarize the data, or you can manually change the value of tokens in attribution_tree.py.

python examples/attribution_tree.py --attr_file ${attr_file} --tokens_file ${tokens_file} \
       --task_name ${task_name} --example_index ${example_index} 

You can generate the attribution tree from the provided example.

python examples/attribution_tree.py --attr_file ${model_and_data}/mnli_example/attr_zero_base_exp16.json \
       --tokens_file ${model_and_data}/mnli_example/tokens_and_pred_100.json \
       --task_name mnli --example_index 16

Self-Attention Head Pruning

We provide the code of pruning attention heads with both our attribution method and the Taylor expansion method. Pruning heads with our method.

python examples/prune_head_with_attr.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Pruning heads with Taylor expansion method.

python examples/prune_head_with_taylor.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Adversarial Attack

First extract the most important connections from the training dataset.

python examples/run_adver_connection.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 --zero_baseline \
       --model_file ${model_file} --output_dir ${output_dir}

Then use these adversarial triggers to attack the original model.

python examples/run_adver_evaluate.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file} \
       --output_dir ${output_dir} --pattern_file ${pattern_file}

Reference

If you find this repository useful for your work, you can cite the paper:

@inproceedings{attattr,
  author = {Yaru Hao and Li Dong and Furu Wei and Ke Xu},
  title = {Self-Attention Attribution: Interpreting Information Interactions Inside Transformer},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence},
  publisher = {{AAAI} Press},
  year      = {2021},
  url       = {https://arxiv.org/pdf/2004.11207.pdf}
}
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022