Pointer networks Tensorflow2

Overview

Pointer networks Tensorflow2

原文:https://arxiv.org/abs/1506.03134
仅供参考与学习,内含代码备注

环境

tensorflow==2.6.0
tqdm
matplotlib
numpy

《pointer networks》阅读笔记

应用场景:

文本摘要,凸包问题,Roundelay 三角剖分,旅行商问题

其中包括一些Latex,github无法渲染,所以建议clone下来用Typora查看。

abstract

本文提出一种新的网络结构:输出序列的元素是与输入序列中的位置相对应的离散标记。

an output sequence with elements that are discrete tokens corresponding to positions in an input sequence.

这种问题目前可以被一些现有的方法解决:sequence-to-sequence, neural turing machines。但是这些方法不是特别适用。

本文解决的问题是sorting variable sized sequences,以及各种组合优化问题。本模型使用attention机制来解决变化尺寸的输出。

intro

RNN模型的输出维度是固定的,sequence-to-sequence模型移除了这一个限制,通过用一个RNN把输入映射为一个embedding,又用一个RNN把embedding映射到输出序列。

但是这些sequence-to-sequence 方法都是固定大小的词汇表。

例如词汇表中只存在A,B,C。那么输入

1,2,3 ----> A,B,C

1,2,3,4 ----> A,B,C,A

本文提出的框架适用于输出的词汇表大小取决于输入问题的大小

image-20211105133740833

image-20211105134312635

左图:seq-2-seq

蓝色RNN,输出一个向量。

紫色RNN,利用概率的链式法则,输出一个固定维度。

本文的贡献如下:

  1. 提出一种新的结构,称为指针网路。简单且高效
  2. 良好的泛化性能
  3. 一个TSP近似求解器

Models

sequence-to-sequence 模型

训练数据为: $$ (P,C^P) $$ 其中,$\mathcal{P}=\left{P_{1}, \ldots, P_{n}\right}$,是n个向量。$\mathcal{C}^{\mathcal{P}}=\left{C_{1}, \ldots, C_{m(\mathcal{P})}\right}$ ,n个对应的结果,$m(\mathcal{P})\in [1,n]$ 。传统的sequence-to-sequence的$\mathcal{C}^{\mathcal{P}}$是固定大小的,但是要提前给定。本文的$\mathcal{C}^{\mathcal{P}}$为n,根据输入改变。

如果模型的参数记为$\theta$,神经网络模型表达为: $$ p(C^P|P,\theta) $$ 使用链式法则,写为: $$ p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta\right)=\prod_{i=1}^{m(\mathcal{P})} p_{\theta}\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P} ; \theta\right) $$ 训练阶段,最大似然概率: $$ \theta^{*}=\underset{\theta}{\arg \max } \sum_{\mathcal{P}, \mathcal{C}^{\mathcal{P}}} \log p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta\right) $$ input sequence的末端加一个$\Rightarrow$,代表进入生成阶段,$\Leftarrow$代表结束生成阶段。

推断: $$ \hat{\mathcal{C}}^{\mathcal{P}}=\underset{\mathcal{C}^{\mathcal{P}}}{\arg \max } p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta^{*}\right) $$

content based input attention

对于attention机制,请查看《Neural Machine Translation By Jointly Learning To Align And Translate》阅读笔记。

对于LSTM RNN $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) & j \in(1, \ldots, n) \ a_{j}^{i} &=\operatorname{softmax}\left(u_{j}^{i}\right) & j \in(1, \ldots, n) \ d_{i}^{\prime} &=\sum_{j=1}^{n} a_{j}^{i} e_{j} & \end{aligned} $$ 对于这个传统的attention机制,可以看到$u^{i}$, 是一个长度为$n$的向量。

这样的话,在解码器的每一个时间步迭代都会得到一个 n 长度的向量,可以作为指针,用于指向之前的 n 长度的序列。

Ptr-Net

所以Ptr-Net计算公式写为: $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) \quad j \in(1, \ldots, n) \ p\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P}\right) &=\operatorname{softmax}\left(u^{i}\right) \end{aligned} $$ image-20211111103159924

image-20211111110334755

数据以 [Batch, time_steps, feature] 的形式进入编码器LSTM(绿色部分),在时间步上迭代$n$次以后,得到:

  • n 个 e [batch, units], 可以合并写为 [batch, n, units]

  • 最后一个时间步输出的 c [batch, units]

进入到解码器LSTM(蓝色部分),输入为:

  • 上次得到解码得到的的pointer,如果是第一次则为initial pointer
  • 上次的状态d,c

pointer 如何得到?计算公式如下: $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) \quad j \in(1, \ldots, n) \ p\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P}\right) &=\operatorname{softmax}\left(u^{i}\right) \end{aligned} $$

motivation and datasets structure

文章是为了解决三种问题,凸包,Delaunay Triangulation,旅行商问题。在此只对旅行商问题进行探讨。

travelling salesman problem

给定一个城市列表,我们希望找到一条最短的路线,每个城市只访问一次,然后返回起点。此外,假设两个城市之间的距离在正反方向上是相同的。这是一个NP难问题,测试模型的能力和局限性。

数据生成:

卡迪尔坐标系(二维),$[0,1] \times[0,1]$

使用 Held-Karp algorithm 得到准确解,n最多为20。

A1,A2,A3为三种其他算法。A1,A2时间复杂度为$O\left(n^{2}\right)$,A3时间复杂度为$O\left(n^{3}\right)$。A3,Christofides algorithm 算法保证在距离最佳长度1.5倍的范围内找到解,详细信息查看原文参考文献。生成1M个数据进行训练。

image-20211111111416012

分析表格:

  1. n=5的时候,性能都很好
  2. n=10,ptr-net的性能比A1好
  3. n=50的时候,无法超过数据集性能(因为ptr-net使用不准确的答案进行训练的)
  4. 只用n少的训练,推广到大n情况,性能不太好。

对于n=30的情况,Ptr-net算法复杂度为$O(n \log n)$,远低于A1,A2,A3。却有相似的性能,说明可发展空间还是很大的。

You might also like...
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

Releases(v0)
Owner
HUANG HAO
Program = Algorithm + Data structure
HUANG HAO
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022