Open-source Monocular Python HawkEye for Tennis

Overview

Tennis Tracking 🎾

Objectives

  • Track the ball
  • Detect court lines
  • Detect the players

To track the ball we used TrackNet - deep learning network for tracking high-speed objects. For players detection yolov3 was used.

Example using sample videos

Input Output
input_img1 output_img1
input_img2 output_img2
input_img3 output_img3

How to run

This project requires compatible GPU to install tensorflow, you can run it on your local machine in case you have one or use Google Colaboratory with Runtime Type changed to GPU.

  1. Clone this repository
  2. git clone https://github.com/ArtLabss/tennis-tracking
    
  3. Download yolov3 weights (237 MB) from here and add it to your Yolov3 folder.
  4. Install the requirements using pip
  5. pip install -r requirements.txt
  6. Run the following command in the command line
  7. python predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
  8. If you are using Google Colab upload all the files to Google Drive
  9. Create a Google Colaboratory Notebook in the same directory as predict_video.py and connect it to Google drive
  10. from google.colab import drive
    drive.mount('/content/drive')
  11. Change the working directory to the one where the Colab Notebook and predict_video.py are. In my case,
  12. import os 
    os.chdir('MyDrive/Colab Notebooks/tennis-tracking')
  13. Install the requirements
  14. !pip install -r requirements.txt
  15. Inside the notebook run predict_video.py
  16.  !python3 predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
    

    After the compilation is completed, a new video will be created in VideoOutput folder if --minimap was set 0, if --minimap=1 three videos will be created: video of the game, video of minimap and a combined video of both

    P.S. If you stumble upon an error or have any questions feel free to open a new Issue

What's new?

  • Court line detection improved
  • Player detection improved
  • The algorithm now works practically with any court colors
  • Faster algorithm
  • Dynamic Mini-Map with players and ball added, to activate use argument --minimap
--minimap=0 --minimap=1
input_img1 output_img1

Further Developments

  • Improve line detection of the court and remove overlapping lines
  • Algorithm fails to detect players when the court colors aren't similar to the sample video
  • Don't detect the ballboys/ballgirls
  • Don't contour the banners
  • Detect players on videos with different angles
  • Find the coordinates of the ball touching the court and display them
  • Code Optimization
  • Dynamic court mini-map with players and the ball

Current Drawbacks

  • Slow algorithms (to process 15 seconds video (6.1 Mb) it takes 28 minutes 16 minutes)
  • Algorithm works only on official match videos

References

- Yu-Chuan Huang, "TrackNet: Tennis Ball Tracking from Broadcast Video by Deep Learning Networks," Master Thesis, advised by Tsì-Uí İk and Guan-Hua Huang, National Chiao Tung University, Taiwan, April 2018. - Yu-Chuan Huang, I-No Liao, Ching-Hsuan Chen, Tsì-Uí İk, and Wen-Chih Peng, "TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports Applications," in the IEEE International Workshop of Content-Aware Video Analysis (CAVA 2019) in conjunction with the 16th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS 2019), 18-21 September 2019, Taipei, Taiwan. - Joseph Redmon, Ali Farhadi, "YOLOv3: An Incremental Improvement", University of Washington, https://arxiv.org/pdf/1804.02767.pdf
Owner
ArtLabs
ArtLabs
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022