Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

Overview

sklearn-compatible Random Bits Forest

Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a binary on Sourceforge. All credits belong to the authors. This is just some quick and dirty wrapper and testing code.

The authors present "...a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data with large size."

Note: the executable supplied by the authors has been compiled for Linux, and for CPUs supporting SSE instructions.

Fig1 from Wang et al., 2016

Usage

Usage example of the Random Bits Forest:

from uci_loader import *
from randombitsforest import RandomBitsForest
X, y = getdataset('diabetes')

from sklearn.ensemble.forest import RandomForestClassifier

classifier = RandomBitsForest()
classifier.fit(X[:len(y)/2], y[:len(y)/2])
p = classifier.predict(X[len(y)/2:])
print "Random Bits Forest Accuracy:", np.mean(p == y[len(y)/2:])

classifier = RandomForestClassifier(n_estimators=20)
classifier.fit(X[:len(y)/2], y[:len(y)/2])
print "Random Forest Accuracy:", np.mean(classifier.predict(X[len(y)/2:]) == y[len(y)/2:])

Usage example for the UCI comparison:

from uci_comparison import compare_estimators
from sklearn.ensemble.forest import RandomForestClassifier, ExtraTreesClassifier
from randombitsforest import RandomBitsForest

estimators = {
              'RandomForest': RandomForestClassifier(n_estimators=200),
              'ExtraTrees': ExtraTreesClassifier(n_estimators=200),
              'RandomBitsForest': RandomBitsForest(number_of_trees=200)
            }

# optionally, pass a list of UCI dataset identifiers as the datasets parameter, e.g. datasets=['iris', 'diabetes']
# optionally, pass a dict of scoring functions as the metric parameter, e.g. metrics={'F1-score': f1_score}
compare_estimators(estimators)

"""
                          ExtraTrees F1score RandomBitsForest F1score RandomForest F1score
========================================================================================
  breastcancer (n=683)      0.960 (SE=0.003)      0.954 (SE=0.003)     *0.963 (SE=0.003)
       breastw (n=699)     *0.956 (SE=0.003)      0.951 (SE=0.003)      0.953 (SE=0.005)
      creditg (n=1000)     *0.372 (SE=0.005)      0.121 (SE=0.003)      0.371 (SE=0.005)
      haberman (n=306)      0.317 (SE=0.015)     *0.346 (SE=0.020)      0.305 (SE=0.016)
         heart (n=270)      0.852 (SE=0.004)     *0.854 (SE=0.004)      0.852 (SE=0.006)
    ionosphere (n=351)      0.740 (SE=0.037)     *0.741 (SE=0.037)      0.736 (SE=0.037)
          labor (n=57)      0.246 (SE=0.016)      0.128 (SE=0.014)     *0.361 (SE=0.018)
liverdisorders (n=345)      0.707 (SE=0.013)     *0.723 (SE=0.013)      0.713 (SE=0.012)
     tictactoe (n=958)      0.030 (SE=0.007)     *0.336 (SE=0.040)      0.030 (SE=0.007)
          vote (n=435)     *0.658 (SE=0.012)      0.228 (SE=0.017)     *0.658 (SE=0.012)
"""
Owner
Tamas Madl
Tamas Madl
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022