UpliftML: A Python Package for Scalable Uplift Modeling

Overview

UpliftML: A Python Package for Scalable Uplift Modeling

upliftml

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base learners for the uplift models. Evaluation functions expect a PySpark dataframe as input.

Uplift modeling is a family of techniques for estimating the Conditional Average Treatment Effect (CATE) from experimental or observational data using machine learning. In particular, we are interested in estimating the causal effect of a treatment T on the outcome Y of an individual characterized by features X. In experimental data with binary treatments and binary outcomes, this is equivalent to estimating Pr(Y=1 | T=1, X=x) - Pr(Y=1 | T=0, X=x).

In many practical use cases the goal is to select which users to target in order to maximize the overall uplift without exceeding a specified budget or ROI constraint. In those cases, estimating uplift alone is not sufficient to make optimal decisions and we need to take into account the costs and monetary benefit incurred by the treatment.

Uplift modeling is an emerging tool for various personalization applications. Example use cases include marketing campaigns personalization and optimization, personalized pricing in e-commerce, and clinical treatment personalization.

The UpliftML library includes PySpark/H2O implementations for the following:

  • 6 metalearner approaches for uplift modeling: T-learner[1], S-learner[1], X-learner[1], R-learner[2], class variable transformation[3], transformed outcome approach[4].
  • The Retrospective Estimation[5] technique for uplift modeling under ROI constraints.
  • Uplift and iROI-based evaluation and plotting functions with bootstrapped confidence intervals. Currently implemented: ATE, ROI, iROI, CATE per category/quantile, CATE lift, Qini/AUUC curves[6], Qini/AUUC score[6], cumulative iROI curves.

For detailed information about the package, read the UpliftML documentation.

Installation

Install the latest release from PyPI:

$ pip install upliftml

Quick Start

from upliftml.models.pyspark import TLearnerEstimator
from upliftml.evaluation import estimate_and_plot_qini
from upliftml.datasets import simulate_randomized_trial
from pyspark.ml.classification import LogisticRegression


# Read/generate the dataset and convert it to Spark if needed
df_pd = simulate_randomized_trial(n=2000, p=6, sigma=1.0, binary_outcome=True)
df_spark = spark.createDataFrame(df_pd)

# Split the data into train, validation, and test sets
df_train, df_val, df_test = df_spark.randomSplit([0.5, 0.25, 0.25])

# Preprocess the datasets (for implementation of get_features_vector, see the full example notebook)
num_features = [col for col in df_spark.columns if col.startswith('feature')]
cat_features = []
df_train_assembled = get_features_vector(df_train, num_features, cat_features)
df_val_assembled = get_features_vector(df_val, num_features, cat_features)
df_test_assembled = get_features_vector(df_test, num_features, cat_features)

# Build a two-model estimator
model = TLearnerEstimator(base_model_class=LogisticRegression,
                          base_model_params={'maxIter': 15},
                          predictors_colname='features',
                          target_colname='outcome',
                          treatment_colname='treatment',
                          treatment_value=1,
                          control_value=0)
model.fit(df_train_assembled, df_val_assembled)

# Apply the model to test data
df_test_eval = model.predict(df_test_assembled)

# Evaluate performance on the test set
qini_values, ax = estimate_and_plot_qini(df_test_eval)

For complete examples with more estimators and evaluation functions, see the demo notebooks in the examples folder.

Contributing

If interested in contributing to the package, get started by reading our contributor guidelines.

License

The project is licensed under Apache 2.0 License

Citation

If you use UpliftML, please cite it as follows:

Irene Teinemaa, Javier Albert, Nam Pham. UpliftML: A Python Package for Scalable Uplift Modeling. https://github.com/bookingcom/upliftml, 2021. Version 0.0.1.

@misc{upliftml,
  author={Irene Teinemaa, Javier Albert, Nam Pham},
  title={{UpliftML}: {A Python Package for Scalable Uplift Modeling}},
  howpublished={https://github.com/bookingcom/upliftml},
  note={Version 0.0.1},
  year={2021}
}

Resources

Documentation:

Tutorials and blog posts:

Related packages:

  • CausalML: a Python package for uplift modeling and causal inference with machine learning
  • EconML: a Python package for estimating heterogeneous treatment effects from observational data via machine learning

References

  1. Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 2019.
  2. Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. arXiv preprint arXiv:1712.04912, 2017.
  3. Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data. ICML Workshop on Clinical Data Analysis, 2012.
  4. Susan Athey and Guido W. Imbens. Machine learning methods for estimating heterogeneous causal effects. stat, 1050(5), 2015.
  5. Dmitri Goldenberg, Javier Albert, Lucas Bernardi, Pablo Estevez Castillo. Free Lunch! Retrospective Uplift Modeling for Dynamic Promotions Recommendation within ROI Constraints. In Fourteenth ACM Conference on Recommender Systems (pp. 486-491), 2020.
  6. Nicholas J Radcliffe and Patrick D Surry. Real-world uplift modelling with significance based uplift trees. White Paper tr-2011-1, Stochastic Solutions, 2011.
Owner
Booking.com
Open source projects and forks of projects we use internally (for better upstream collaboration)
Booking.com
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022