E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

Overview

MagInkCal

This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve events from a Google Calendar, format it into the desired layout, before pushing it to a Waveshare 12.48" tri-color E-Ink display. Note that the code has only been tested on the specific hardware mentioned, and customization of the code is necessary for it to work with other E-Ink displays or Battery/RTC add-ons. That said, enjoy working on your project and hopefully this helps to jump-start your magic calendar journey.

20210924_175459

Background

Back in 2019, I started a thread in Reddit to bounce an idea I had with the community: to replicate the Android Magic Calendar concept that inspired many DIY projects in the subsequent years. But specifically, I wanted it to run on battery so I could position it anywhere in house, and even hang it on the wall without a wire dangling beneath it. I also wanted the parts to be plug and play since I had neither the desire nor the steady hands needed to solder anything. After sitting on that idea for close to a year, I finally got my act together and ordered the parts I needed for this project. I posted another update to Reddit in 2020, but got overwhelmed with life/work so it took me almost another year before posting the full set of instructions and code here. An update was also posted on Reddit to share this with the community.

Hardware Required

How It Works

Through PiSugar2's web interface, the onboard RTC can be set to trigger the RPi to boot up daily at 6AM. Upon boot, a cronjob on the RPi is triggered to run a Python script that fetches calendar events from Google Calendar for the next few weeks, and formats them into the desired layout before displaying it on the E-Ink display. The RPi then shuts down to conserve battery. The calendar remains displayed on the E-Ink screen, because well, E-Ink...

Some features of the calendar:

  • Battery life is the big question so I'll address it first. I'm getting around 3-4 weeks before needing to recharge the PiSugar2. I'm fairly happy with this but I'm sure this can be extended if I optimize the code further.
  • Since I had the luxury of using red for the E-Ink display, I used it to highlight the current date, as well as recently added/updated events.
  • I don't like having long bars that span across multiple days for multi-day events, so I chose to display only the start and end dates for those events, and adding small left/right arrows accordingly,
  • Given limited space (oh why are large E-Ink screens still so expensive!) and resolution on the display, I could only show 3 events per day and an indicator (e.g. 4 more) for those not displayed
  • The calendar always starts from the current week, and displays the next four (total 35 days). If the dates cross over to the new month, it's displayed in grey instead of black.

MagInkCal Basics

Setting Up Raspberry Pi Zero

  1. Start by flashing Raspberrypi OS Lite to a MicroSD Card.

  2. After setting up the OS, run the following commmand in the RPi Terminal, and use the raspi-config interface to setup Wifi connection, enable SSH, I2C, SPI, and set the timezone to your location.

sudo raspi-config
  1. Run the following commands in the RPi Terminal to setup the environment to run the Python scripts.
sudo apt update
sudo apt-get install python3-pip
sudo apt-get install chromium-chromedriver
pip3 install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib
  1. Run the following commands in the RPi Terminal to install the libraries needed to drive the E-Ink display. See this page for more details.
sudo apt-get install python3-pil
sudo pip3 install RPi.GPIO
sudo pip3 install spidev
  1. Run the following commands in the RPi Terminal to install the web interface for PiSugar2 display. See this page for more details. After running the command, you would be able to access the web interface at http://:8421 in your browser. From there you should be able specify when you wish to schedule the PiSugar2 boot up your RPi.
curl http://cdn.pisugar.com/release/Pisugar-power-manager.sh | sudo bash
  1. Download the over the files in this repo to a folder in your PC first.

  2. In order for you to access your Google Calendar events, it's necessary to first grant the access. Follow the instructions here on your PC to get the credentials.json file from your Google API. Don't worry, take your time. I'll be waiting here.

  3. Once done, copy the credentials.json file to the "gcal" folder in this project. Run the following command on your PC. A web browser should appear, asking you to grant access to your calendar. Once done, you should see a "token.pickle" file in your "gcal" folder.

python3 quickstart.py
  1. Copy all the files over to your RPi using your preferred means.

  2. Run the following command in the RPi Terminal to open crontab.

crontab -e
  1. Specifically, add the following command to crontab so that the MagInkCal Python script runs each time the RPi is booted up.
@reboot cd /location/to/your/maginkcal && python3 maginkcal.py
  1. That's all! Your Magic Calendar should now be refreshed at the time interval that you specified in the PiSugar2 web interface!

PS: I'm aware that the instructions above may not be complete, especially when it comes to the Python libraries to be installed, so feel free to ping me if you noticed anything missing and I'll add it to the steps above.

Acknowledgements

Contributing

I won't be updating this code much, since it has been serving me well. Nevertheless, feel free to fork the repo and modify it for your own purpose. At the same time, check out other similar projects, such as InkyCal. It's much more polished and also actively developed.

What's Next

Honestly, the cost of this project is way too high for a single purpose device. Personally, I've been looking at E-Ink tablets that emulate the experience of writing on paper, and allow the users to take notes on the go. Those familiar with this range of products would be aware of the reMarkable tablet, Ratta Supernote, Kobo Elipsa and many others. My next project is likely to enhance one of these devices such that the calendar will be displayed when it's not in use. While this is usually possible by manually setting the sleep screen image / screensaver, I'm looking to have the screensaver updated automatically on a daily basis, like how it was done in this project.

Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
3 Apr 20, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023