A Graph Learning library for Humans

Overview

A Graph Learning library for Humans

These novel algorithms include but are not limited to:

  • A graph construction and graph searching class can be found here (NodeGraph). It was developed and invented as a faster alternative for hierarchical DAG construction and searching.
  • A fast DBSCAN method utilizing my connectivity code as invented during my PhD.
  • A NLP pattern matching algorithm useful for sequence alignment clustering.
  • High dimensional alignment code for aligning models to data.
  • An SVD based variant of the Distance Geometry algorithm. For going from relative to absolute coordinates.

License DOI Downloads

Visit the active code via : https://github.com/richardtjornhammar/graphtastic

Pip installation with :

pip install graphtastic

Version controlled installation of the Graphtastic library

The Graphtastic library

In order to run these code snippets we recommend that you download the nix package manager. Nix package manager links from Februari 2022:

https://nixos.org/download.html

$ curl -L https://nixos.org/nix/install | sh

If you cannot install it using your Wintendo then please consider installing Windows Subsystem for Linux first:

https://docs.microsoft.com/en-us/windows/wsl/install-win10

In order to run the code in this notebook you must enter a sensible working environment. Don't worry! We have created one for you. It's version controlled against python3.9 (and experimental python3.10 support) and you can get the file here:

https://github.com/richardtjornhammar/graphtastic/blob/master/env/env39.nix

Since you have installed Nix as well as WSL, or use a Linux (NixOS) or bsd like system, you should be able to execute the following command in a termnial:

$ nix-shell env39.nix

Now you should be able to start your jupyter notebook locally:

$ jupyter-notebook graphhaxxor.ipynb

and that's it.

EXAMPLE 0

Running

import graphtastic.graphs as gg
import graphtastic.clustering as gl
import graphtastic.fit as gf
import graphtastic.convert as gc

Should work if the install was succesful

Example 1 : Absolute and relative coordinates

In this example, we will use the SVD based distance geometry method to go between absolute coordinates, relative coordinate distances and back to ordered absolute coordinates. Absolute coordinates are float values describing the position of something in space. If you have several of these then the same information can be conveyed via the pairwise distance graph. Going from absolute coordinates to pairwise distances is simple and only requires you to calculate all the pairwise distances between your absolute coordinates. Going back to mutually orthogonal ordered coordinates from the pariwise distances is trickier, but a solved problem. The distance geometry can be obtained with SVD and it is implemented in the graphtastic.fit module under the name distance_matrix_to_absolute_coordinates. We start by defining coordinates afterwhich we can calculate the pair distance matrix and transforming it back by using the code below

import numpy as np

coordinates = np.array([[-23.7100 ,  24.1000 ,  85.4400],
  [-22.5600 ,  23.7600 ,  85.6500],
  [-21.5500 ,  24.6200 ,  85.3800],
  [-22.2600 ,  22.4200 ,  86.1900],
  [-23.2900 ,  21.5300 ,  86.4800],
  [-20.9300 ,  22.0300 ,  86.4300],
  [-20.7100 ,  20.7600 ,  86.9400],
  [-21.7900 ,  19.9300 ,  87.1900],
  [-23.0300 ,  20.3300 ,  86.9600],
  [-24.1300 ,  19.4200 ,  87.2500],
  [-23.7400 ,  18.0500 ,  87.0000],
  [-24.4900 ,  19.4600 ,  88.7500],
  [-23.3700 ,  19.8900 ,  89.5200],
  [-24.8500 ,  18.0000 ,  89.0900],
  [-23.9600 ,  17.4800 ,  90.0800],
  [-24.6600 ,  17.2400 ,  87.7500],
  [-24.0800 ,  15.8500 ,  88.0100],
  [-23.9600 ,  15.1600 ,  86.7600],
  [-23.3400 ,  13.7100 ,  87.1000],
  [-21.9600 ,  13.8700 ,  87.6300],
  [-24.1800 ,  13.0300 ,  88.1100],
  [-23.2900 ,  12.8200 ,  85.7600],
  [-23.1900 ,  11.2800 ,  86.2200],
  [-21.8100 ,  11.0000 ,  86.7000],
  [-24.1500 ,  11.0300 ,  87.3200],
  [-23.5300 ,  10.3200 ,  84.9800],
  [-23.5400 ,   8.9800 ,  85.4800],
  [-23.8600 ,   8.0100 ,  84.3400],
  [-23.9800 ,   6.5760 ,  84.8900],
  [-23.2800 ,   6.4460 ,  86.1300],
  [-23.3000 ,   5.7330 ,  83.7800],
  [-22.7300 ,   4.5360 ,  84.3100],
  [-22.2000 ,   6.7130 ,  83.3000],
  [-22.7900 ,   8.0170 ,  83.3800],
  [-21.8100 ,   6.4120 ,  81.9200],
  [-20.8500 ,   5.5220 ,  81.5200],
  [-20.8300 ,   5.5670 ,  80.1200],
  [-21.7700 ,   6.4720 ,  79.7400],
  [-22.3400 ,   6.9680 ,  80.8000],
  [-20.0100 ,   4.6970 ,  82.1500],
  [-19.1800 ,   3.9390 ,  81.4700] ]);

if __name__=='__main__':

    import graphtastic.fit as gf

    distance_matrix = gf.absolute_coordinates_to_distance_matrix( coordinates )
    ordered_coordinates = gf.distance_matrix_to_absolute_coordinates( distance_matrix , n_dimensions=3 )

    print ( ordered_coordinates )

You will notice that the largest variation is now aligned with the X axis, the second most variation aligned with the Y axis and the third most, aligned with the Z axis while the graph topology remained unchanged.

Example 2 : Deterministic DBSCAN

DBSCAN is a clustering algorithm that can be seen as a way of rejecting points, from any cluster, that are positioned in low dense regions of a point cloud. This introduces holes and may result in a larger segment, that would otherwise be connected via a non dense link to become disconnected and form two segments, or clusters. The rejection criterion is simple. The central concern is to evaluate a distance matrix with an applied cutoff this turns the distances into true or false values depending on if a pair distance between point i and j is within the distance cutoff. This new binary Neighbour matrix tells you wether or not two points are neighbours (including itself). The DBSCAN criterion states that a point is not part of any cluster if it has fewer than minPts neighbors. Once you've calculated the distance matrix you can immediately evaluate the number of neighbors each point has and the rejection criterion, via . If the rejection vector R value of a point is True then all the pairwise distances in the distance matrix of that point is set to a value larger than epsilon. This ensures that a distance matrix search will reject those points as neighbours of any other for the choosen epsilon. By tracing out all points that are neighbors and assessing the connectivity (search for connectivity) you can find all the clusters.

import numpy as np
from graphtastic.clustering import dbscan, reformat_dbscan_results
from graphtastic.fit import absolute_coordinates_to_distance_matrix

N   = 100
N05 = int ( np.floor(0.5*N) )
R   = 0.25*np.random.randn(N).reshape(N05,2) + 1.5
P   = 0.50*np.random.randn(N).reshape(N05,2)

coordinates = np.array([*P,*R])

results = dbscan ( distance_matrix = absolute_coordinates_to_distance_matrix(coordinates,bInvPow=True) , eps=0.45 , minPts=4 )
clusters = reformat_dbscan_results(results)
print ( clusters )

Example 3 : NodeGraph, distance matrix to DAG

Here we demonstrate how to convert the graph coordinates into a hierarchy. The leaf nodes will correspond to the coordinate positions.

import numpy as np

coordinates = np.array([[-23.7100 ,  24.1000 ,  85.4400],
  [-22.5600 ,  23.7600 ,  85.6500],
  [-21.5500 ,  24.6200 ,  85.3800],
  [-22.2600 ,  22.4200 ,  86.1900],
  [-23.2900 ,  21.5300 ,  86.4800],
  [-20.9300 ,  22.0300 ,  86.4300],
  [-20.7100 ,  20.7600 ,  86.9400],
  [-21.7900 ,  19.9300 ,  87.1900],
  [-23.0300 ,  20.3300 ,  86.9600],
  [-24.1300 ,  19.4200 ,  87.2500],
  [-23.7400 ,  18.0500 ,  87.0000],
  [-24.4900 ,  19.4600 ,  88.7500],
  [-23.3700 ,  19.8900 ,  89.5200],
  [-24.8500 ,  18.0000 ,  89.0900],
  [-23.9600 ,  17.4800 ,  90.0800],
  [-24.6600 ,  17.2400 ,  87.7500],
  [-24.0800 ,  15.8500 ,  88.0100],
  [-23.9600 ,  15.1600 ,  86.7600],
  [-23.3400 ,  13.7100 ,  87.1000],
  [-21.9600 ,  13.8700 ,  87.6300],
  [-24.1800 ,  13.0300 ,  88.1100],
  [-23.2900 ,  12.8200 ,  85.7600],
  [-23.1900 ,  11.2800 ,  86.2200],
  [-21.8100 ,  11.0000 ,  86.7000],
  [-24.1500 ,  11.0300 ,  87.3200],
  [-23.5300 ,  10.3200 ,  84.9800],
  [-23.5400 ,   8.9800 ,  85.4800],
  [-23.8600 ,   8.0100 ,  84.3400],
  [-23.9800 ,   6.5760 ,  84.8900],
  [-23.2800 ,   6.4460 ,  86.1300],
  [-23.3000 ,   5.7330 ,  83.7800],
  [-22.7300 ,   4.5360 ,  84.3100],
  [-22.2000 ,   6.7130 ,  83.3000],
  [-22.7900 ,   8.0170 ,  83.3800],
  [-21.8100 ,   6.4120 ,  81.9200],
  [-20.8500 ,   5.5220 ,  81.5200],
  [-20.8300 ,   5.5670 ,  80.1200],
  [-21.7700 ,   6.4720 ,  79.7400],
  [-22.3400 ,   6.9680 ,  80.8000],
  [-20.0100 ,   4.6970 ,  82.1500],
  [-19.1800 ,   3.9390 ,  81.4700] ]);


if __name__=='__main__':

    import graphtastic.graphs as gg
    import graphtastic.fit as gf
    GN = gg.NodeGraph()
    #
    # bInvPow refers to the distance type. If True then R distances are returned
    # instead of R2 (R**2) distances. That is also computing the square root if True
    #
    distm = gf.absolute_coordinates_to_distance_matrix( coordinates , bInvPow=True )
    #
    # Now a Graph DAG is constructed from the pairwise distances
    GN.distance_matrix_to_graph_dag( distm )
    #
    # And write it to a json file so that we may employ JS visualisations
    # such as D3 or other nice packages to view our hierarchy
    GN.write_json( jsonfile='./graph_hierarchy.json' )

Manually updated code backups for this library :

GitLab | https://gitlab.com/richardtjornhammar/graphtastic

CSDN | https://codechina.csdn.net/m0_52121311/graphtastic

You might also like...
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

🐍PyNode Next allows you to easily create beautiful graph visualisations and animations
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

Declarative statistical visualization library for Python
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Plotting library for IPython/Jupyter notebooks
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

Cartopy - a cartographic python library with matplotlib support
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

Releases(v0.12.0)
Owner
Richard Tjörnhammar
PhD in Biological physics https://richardtjornhammar.github.io
Richard Tjörnhammar
cqMore is a CadQuery plugin based on CadQuery 2.1.

cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies

Justin Lin 36 Dec 21, 2022
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Praneeth Namburi 10 Jun 01, 2022
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Germline Mutation Calling This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants. The pipeline require

12 Dec 24, 2022
trade bot connected to binance API/ websocket.,, include dashboard in plotly dash to visualize trades and balances

Crypto trade bot 1. What it is Trading bot connected to Binance API. This project made for fun. So ... Do not use to trade live before you have backte

G 3 Oct 07, 2022
Glue is a python project to link visualizations of scientific datasets across many files.

Glue Glue is a python project to link visualizations of scientific datasets across many files. Click on the image for a quick demo: Features Interacti

675 Dec 09, 2022
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
An interactive GUI for WhiteboxTools in a Jupyter-based environment

whiteboxgui An interactive GUI for WhiteboxTools in a Jupyter-based environment GitHub repo: https://github.com/giswqs/whiteboxgui Documentation: http

Qiusheng Wu 105 Dec 15, 2022
Farhad Davaripour, Ph.D. 1 Jan 05, 2022
Histogramming for analysis powered by boost-histogram

Hist Hist is an analyst-friendly front-end for boost-histogram, designed for Python 3.7+ (3.6 users get version 2.4). See what's new. Installation You

Scikit-HEP Project 97 Dec 25, 2022
nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation.

nptsne nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation and HSNE modelling. For more detail s

Biomedical Visual Analytics Unit LUMC - TU Delft 29 Jul 05, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib

9 Sep 26, 2022
Customizing Visual Styles in Plotly

Customizing Visual Styles in Plotly Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data

Data Design Dimension 9 Aug 03, 2022
GitHub English Top Charts

Help you discover excellent English projects and get rid of the interference of other spoken language.

kon9chunkit 529 Jan 02, 2023
Multi-class confusion matrix library in Python

Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References

Sepand Haghighi 1.3k Dec 31, 2022
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022