Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Overview

curvipy 📐

licence

The Python package for visualizing curves and linear transformations in a super simple way.

✏️ Installation

Install curvipy package with pip:

$ pip install curvipy

or clone the repository:

$ git clone https://github.com/dylannalex/curvipy.git

✏️ Basic usage

This is a simple use guide. You can see all curvipy functionalities at curvipy documentation.

📌 Drawing curves

To start drawing curves you need to create a GraphingCalculator object:

from curvipy import GraphingCalculator

graphing_calculator = GraphingCalculator()

curvipy let you draw parametrized curves and mathematical functions. Lets create and draw the square root of x function for this example:

def square_root(x):
    return x ** (1 / 2)

graphing_calculator.draw(square_root, (0, 25))  # We want to draw the function from x = 0 to x = 25

You can also accomplish the same result by defining the square root of x as a parameterized function:

def square_root(t):
    return t, t ** (1 / 2)

graphing_calculator.draw(square_root, (0, 25))  # We want to draw the curve from t = 0 to t = 25

📌 Linear transformations

curvipy provides a curves module which contains functions for modifying curves with linear transformations.

from curvipy import curves

📍 curves.transform_curve()

This function let you apply a linear transformation (specified as a matrix) to a parametrized curve. curves.transform_curve() returns the transformed curve.

Parameters:

  • curve: parametrized curve
  • matrix: linear transformation's matrix

The matrix is a tuple of tuples (or list of lists) which has the same structure as numpy arrays. A matrix
[ a b ]
[ c d ]
should be defined as:

matrix = ((a,b), (c,d))

Example:

matrix = ((1, 0), (0, -2))
graphing_calculator.draw(curves.transform_curve(square_root, matrix), (0, 25))

📍 curves.rotate_curve()

Rotates a curve anticlockwise by the given angle.

Parameters:

  • curve: parametrized curve
  • angle: angle in radians
    Example:
angle = pi / 4  # 90 degrees
graphing_calculator.draw(curves.rotate_curve(square_root, angle), (0, 25))

📍 curves.scale_curve()

Scales the given curve by the given scalar.

Parameters:

  • curve: parametrized curve
  • scalar: scalar for scaling the curve
    Example:
scalar = 2  # The function is going to be twice as bigger
graphing_calculator.draw(curves.scale_curve(square_root, 2), (0, 25))
Comments
  • Update Latex expressions

    Update Latex expressions

    Some changes might feel unnecessary, but I felt like it would be better to have those changes. Like the more conventional font for real number set or the extra line of explanation for linear transformation.

    opened by ritamsaha00 8
  • v1.1.0

    v1.1.0

    • Updated plotter:
      • 'curvipy.Plotter' now draws axes ticks and arrows (to indicate the axis direction).
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Plotter.plot_curve()' and 'curvipy.Plotter.plot_animated_curve()' methods.
      • 'curvipy.Plotter.plot_vector()' can now display vector's components.
      • Created 'curvipy.PlottingConfiguration' and 'curvipy.AxesConfiguration'
        • Updated 'curvipy.Plotter' builder parameters to 'curvipy.Plotter(window_title: str = "Curvipy", background_color: str = "#FFFFFF", plotting_config: PlottingConfiguration, axes_config: AxesConfiguration)'.
        • Now 'x_axis_scale' and 'y_axis_scale' (defined at curvipy.AxesConfiguration') can take any real value (negative or positive) and default to one.
    • Updated vector:
      • Added vector, addition, subtraction, scaling and equality.
      • Created 'curvipy.Vector.place()' method which moves the vector to a specified set of coordinates.
    • Updated curves:
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Curve.points()' method.
      • Added 'interval: curvipy.Interval' parameter to 'curvipy.Function' and 'curvipy.ParametricFunction' builder.
    • Updated documentation.
    opened by dylannalex 0
  • Show numbers on the x and y axes

    Show numbers on the x and y axes

    A few aspects to keep in mind:

    • Number shown depend on 'curvipy.Plotter.x_axis_scale' and 'curvipy.Plotter.y_axis_scale'.
    • Add a new 'curvipy.Plotter' attribute to indicate the quantity of numbers to be displayed on the axes.
    • Add a method 'curvipy.ScreenFacade' to display text on screen. This method will be used by 'curvipy.Plotter' to display the numbers on the axes.
    enhancement 
    opened by dylannalex 0
  • Add vector addition and subtraction operations.

    Add vector addition and subtraction operations.

    Given the vectors $\vec{v}$ and $\vec{w}$, we want to compute $\vec{n} = \vec{v} + \vec{w}$ and $\vec{m} = \vec{v} - \vec{w}$ as shown below:

    import curvipy
    
    v = curvipy.Vector([10, 10])
    w = curvipy.Vector([5, -5])
    n = v + w
    m = v - w
    

    This is not possible on Curvipy 1.0.1. To do so, users have to calculate $\vec{n}$ and $\vec{m}$ manually:

    import curvipy
    
    v = curvipy.Vector([10, 10])
    w = curvipy.Vector([5, -5])
    n = curvipy.Vector([10 + 5, 10 + (-5)])
    m = curvipy.Vector([10 - 5, 10 - (-5)])
    
    enhancement 
    opened by dylannalex 0
  • Add an 'exclude' parameter to 'curvipy.Interval'

    Add an 'exclude' parameter to 'curvipy.Interval'

    The idea is to exclude a list of values from the interval, so they won't be considered when plotting the curve.

    curvipy.Interval:
        Parameters
        ----------
        start : int or float
            Real number in which the interval starts.
        end : int or float
            Real number in which the interval ends.
        samples: int
            Number of values within the interval. The more samples, the more precise the \
            curve plot is.
        exclude: list[int or float]
            List of values that will be excluded from the interval.
    

    Example: imagine we want to plot the curve $f(x) = 1/x$ on the interval $x \in [-a, a]$. Since $f(0)$ is not defined, the current way of doing that is to create two intervals:

    import curvipy
    
    
    def f(x):
        return 1 / x
    
    
    plotter = curvipy.Plotter()
    
    a = 10
    curve = curvipy.Function(f)
    interval_one = curvipy.Interval(-a, -0.1, 100)
    interval_two = curvipy.Interval(0.1, a, 100)
    
    plotter.plot_curve(curve, interval_one)
    plotter.plot_curve(curve, interval_two)
    plotter.wait()
    

    With an 'exclude' parameter on 'curvipy.Interval' class, we could accomplish the same goal with only one interval:

    import curvipy
    
    
    def f(x):
        return 1 / x
    
    
    plotter = curvipy.Plotter()
    
    a = 10
    curve = curvipy.Function(f)
    interval = curvipy.Interval(-a, a, 200, exclude=[0])
    
    plotter.plot_curve(curve, interval)
    plotter.wait()
    

    If somebody wants to work on it, please make a comment. Implementing this is not as easy as it seems and might need modifications in other classes like curvipy.Plotter and/or curvipy.Curve.

    enhancement wontfix 
    opened by dylannalex 0
  • 1.0.1

    1.0.1

    This update brings a structure improvement and better documentation. Curvipy 1.0.0 scripts are completely compatible with this new version:

    • Made modules private. Now importing curvipy will only import its classes.
    • Created 'curvipy._screen' module. This module contains the 'ScreenFacade' class which encapsulates the turtle package functionalities.
    • Updated documentation.
    opened by dylannalex 0
  • Bump to 1.0.0

    Bump to 1.0.0

    • Added 'curvipy.curve' module. This module contains the classes:
      • 'Curve': base class for all two-dimensional curves.
      • 'Function': unction that given a real number returns another real number.
      • 'ParametricFunction': function that given a real number returns a 2-dimensional vector.
      • 'TransformedCurve': applies a linear transformation to the given curve.
    • Added 'curvipy.interval' module. This module contains the class 'Interval', which is the interval in which a curve will be plotted.
    • Added 'curvipy.vector' module. This module contains the class 'Vector', which is a two-dimensional vector.
    • Updated 'curvipy.graphing_calculator' module (now named 'curvipy.plotter'):
      • Renamed 'curvipy.graphing_calculator' to 'curvipy.plotter' and its class 'GraphingCalculator' to 'Plotter'.
      • Replaced methods 'draw_vector', 'draw_curve' and 'draw_animated_curve' with 'plot_vector', 'plot_curve' and 'plot_animated_curve' respectively.
    • Deleted 'curvipy.lintrans' module. Linear transformations can now be defined with 'curvipy.TransformedCurve' class.
    • Updated README and docs.
    • Deleted 'examples' folder since README and docs now contains a Usage Example section.
    opened by dylannalex 0
  • Update GIFs from docs/source/img for curvipy v1.1.0

    Update GIFs from docs/source/img for curvipy v1.1.0

    GIFs shown on documentation (both README and docs) are from curvipy v1.0.1. To update the animations, just run the code shown above the GIF and record the screen with some third party software (e.g. ActivePresenter).

    documentation good first issue 
    opened by dylannalex 0
  • A rotation function

    A rotation function

    A function that rotates the curve by a certain $\theta$ angle. The implementation is easy, it will take $\theta$, and the curve as input, and method is just like TransformedCurve, but the matrix used will be:

    $$A(\theta)=\begin{pmatrix} \cos\theta & -\sin\theta\ \sin\theta & \cos\theta \end{pmatrix}$$

    enhancement good first issue 
    opened by ritamsaha00 2
Releases(1.1.0)
  • 1.1.0(Dec 28, 2022)

    • Updated plotter:
      • 'curvipy.Plotter' now draws axes ticks and arrows (to indicate the axis direction).
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Plotter.plot_curve()' and 'curvipy.Plotter.plot_animated_curve()' methods.
      • 'curvipy.Plotter.plot_vector()' can now display vector's components.
      • Created 'curvipy.PlottingConfiguration' and 'curvipy.AxesConfiguration'
        • Updated 'curvipy.Plotter' builder parameters to 'curvipy.Plotter(window_title: str = "Curvipy", background_color: str = "#FFFFFF", plotting_config: PlottingConfiguration, axes_config: AxesConfiguration)'.
        • Now 'x_axis_scale' and 'y_axis_scale' (defined at curvipy.AxesConfiguration') can take any real value (negative or positive) and default to one.
    • Updated vector:
      • Added vector, addition, subtraction, scaling and equality.
      • Created 'curvipy.Vector.place()' method which moves the vector to a specified set of coordinates.
    • Updated curves:
      • Removed 'interval: curvipy.Interval' parameter of 'curvipy.Curve.points()' method.
      • Added 'interval: curvipy.Interval' parameter to 'curvipy.Function' and 'curvipy.ParametricFunction' builder.
    • Updated documentation.
    Source code(tar.gz)
    Source code(zip)
  • 1.0.1(Nov 28, 2022)

    This update brings a structure improvement and better documentation. Curvipy 1.0.0 scripts are completely compatible with this new version:

    • Made modules private. Now importing curvipy will only import its classes.
    • Created 'curvipy._screen' module. This module contains the 'ScreenFacade' class which encapsulates the turtle package functionalities.
    • Updated documentation.
    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 22, 2022)

    • Added 'curvipy.curve' module. This module contains the classes:
      • 'Curve': base class for all two-dimensional curves.
      • 'Function': unction that given a real number returns another real number.
      • 'ParametricFunction': function that given a real number returns a 2-dimensional vector.
      • 'TransformedCurve': applies a linear transformation to the given curve.
    • Added 'curvipy.interval' module. This module contains the class 'Interval', which is the interval in which a curve will be plotted.
    • Added 'curvipy.vector' module. This module contains the class 'Vector', which is a two-dimensional vector.
    • Updated 'curvipy.graphing_calculator' module (now named 'curvipy.plotter'):
      • Renamed 'curvipy.graphing_calculator' to 'curvipy.plotter' and its class 'GraphingCalculator' to 'Plotter'.
      • Replaced methods 'draw_vector', 'draw_curve' and 'draw_animated_curve' with 'plot_vector', 'plot_curve' and 'plot_animated_curve' respectively.
    • Deleted 'curvipy.lintrans' module. Linear transformations can now be defined with 'curvipy.TransformedCurve' class.
    • Updated README and docs.
    • Deleted 'examples' folder since README and docs now contains a Usage Example section.
    Source code(tar.gz)
    Source code(zip)
Owner
Dylan Tintenfich
:books: Systems engineering student at Universidad Tecnológica Nacional Mendoza.
Dylan Tintenfich
A package for plotting maps in R with ggplot2

Attention! Google has recently changed its API requirements, and ggmap users are now required to register with Google. From a user’s perspective, ther

David Kahle 719 Jan 04, 2023
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

Félix Gómez 70 Dec 22, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

Christoph Rieke 39 Dec 14, 2022
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Active Transport Analytics Model (ATAM) is a new strategic transport modelling and data visualization framework for Active Transport as well as emerging micro-mobility modes

{ATAM} Active Transport Analytics Model Active Transport Analytics Model (“ATAM”) is a new strategic transport modelling and data visualization framew

Peter Stephan 0 Jan 12, 2022
This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th project are focused on Data Analysis, some of them are also put here to show off other skills that I have learned.

Welcome to my Data Analysis projects page! This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th proje

Kyle Dini 1 Jan 31, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Karl Jaehnig 7 Oct 22, 2022
Python package to Create, Read, Write, Edit, and Visualize GSFLOW models

pygsflow pyGSFLOW is a python package to Create, Read, Write, Edit, and Visualize GSFLOW models API Documentation pyGSFLOW API documentation can be fo

pyGSFLOW 21 Dec 14, 2022
Draw datasets from within Jupyter.

drawdata This small python app allows you to draw a dataset in a jupyter notebook. This should be very useful when teaching machine learning algorithm

vincent d warmerdam 505 Nov 27, 2022
FURY - A software library for scientific visualization in Python

Free Unified Rendering in Python A software library for scientific visualization in Python. General Information • Key Features • Installation • How to

169 Dec 21, 2022
🎨 Python3 binding for `@AntV/G2Plot` Plotting Library .

PyG2Plot 🎨 Python3 binding for @AntV/G2Plot which an interactive and responsive charting library. Based on the grammar of graphics, you can easily ma

hustcc 990 Jan 05, 2023
Tools for exploratory data analysis in Python

Dora Exploratory data analysis toolkit for Python. Contents Summary Setup Usage Reading Data & Configuration Cleaning Feature Selection & Extraction V

Nathan Epstein 599 Dec 25, 2022
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.

Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a

Muhammed Kocabas 207 Jan 01, 2023
Python Data Validation for Humans™.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023