Fast scatter density plots for Matplotlib

Overview

Azure Status Coverage Status

About

Plotting millions of points can be slow. Real slow... 😴

So why not use density maps? âš¡

The mpl-scatter-density mini-package provides functionality to make it easy to make your own scatter density maps, both for interactive and non-interactive use. Fast. The following animation shows real-time interactive use with 10 million points, but interactive performance is still good even with 100 million points (and more if you have enough RAM).

Demo of mpl-scatter-density with NY taxi data

When panning, the density map is shown at a lower resolution to keep things responsive (though this is customizable).

To install, simply do:

pip install mpl-scatter-density

This package requires Numpy, Matplotlib, and fast-histogram - these will be installed by pip if they are missing. Both Python 2.7 and Python 3.x are supported, and the package should work correctly on Linux, MacOS X, and Windows.

Usage

There are two main ways to use mpl-scatter-density, both of which are explained below.

scatter_density method

The easiest way to use this package is to simply import mpl_scatter_density, then create Matplotlib axes as usual but adding a projection='scatter_density' option (if your reaction is 'wait, what?', see here). This will return a ScatterDensityAxes instance that has a scatter_density method in addition to all the usual methods (scatter, plot, etc.).

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

# Generate fake data

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

# Make the plot - note that for the projection option to work, the
# mpl_scatter_density module has to be imported above.

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.savefig('gaussian.png')

Which gives:

Result from the example script

The scatter_density method takes the same options as imshow (for example cmap, alpha, norm, etc.), but also takes the following optional arguments:

  • dpi: this is an integer that is used to determine the resolution of the density map. By default, this is 72, but you can change it as needed, or set it to None to use the default for the Matplotlib backend you are using.
  • downres_factor: this is an integer that is used to determine how much to downsample the density map when panning in interactive mode. Set this to 1 if you don't want any downsampling.
  • color: this can be set to any valid matplotlib color, and will be used to automatically make a monochromatic colormap based on this color. The colormap will fade to transparent, which means that this mode is ideal when showing multiple density maps together.

Here is an example of using the color option:

import numpy as np
import matplotlib.pyplot as plt
import mpl_scatter_density  # noqa

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')

n = 10000000

x = np.random.normal(0.5, 0.3, n)
y = np.random.normal(0.5, 0.3, n)

ax.scatter_density(x, y, color='red')

x = np.random.normal(1.0, 0.2, n)
y = np.random.normal(0.6, 0.2, n)

ax.scatter_density(x, y, color='blue')

ax.set_xlim(-0.5, 1.5)
ax.set_ylim(-0.5, 1.5)

fig.savefig('double.png')

Which produces the following output:

Result from the example script

ScatterDensityArtist

If you are a more experienced Matplotlib user, you might want to use the ScatterDensityArtist directly (this is used behind the scenes in the above example). To use this, initialize the ScatterDensityArtist with the axes as first argument, followed by any arguments you would have passed to scatter_density above (you can also take a look at the docstring for ScatterDensityArtist). You should then add the artist to the axes:

from mpl_scatter_density import ScatterDensityArtist
a = ScatterDensityArtist(ax, x, y)
ax.add_artist(a)

Advanced

Non-linear stretches for high dynamic range plots

In some cases, your density map might have a high dynamic range, and you might therefore want to show the log of the counts rather than the counts. You can do this by passing a matplotlib.colors.Normalize object to the norm argument in the same wasy as for imshow. For example, the astropy package includes a nice framework for making such a Normalize object for different functions. The following example shows how to show the density map on a log scale:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

# Make the norm object to define the image stretch
from astropy.visualization import LogStretch
from astropy.visualization.mpl_normalize import ImageNormalize
norm = ImageNormalize(vmin=0., vmax=1000, stretch=LogStretch())

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y, norm=norm)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.savefig('gaussian_log.png')

Which produces the following output:

Result from the example script

Adding a colorbar

You can show a colorbar in the same way as you would for an image - the following example shows how to do it:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
density = ax.scatter_density(x, y)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.colorbar(density, label='Number of points per pixel')
fig.savefig('gaussian_colorbar.png')

Which produces the following output:

Result from the example script

Color-coding 'markers' with individual values

In the same way that a 1-D array of values can be passed to Matplotlib's scatter function/method, a 1-D array of values can be passed to scatter_density using the c= argument:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)
c = x - y + np.random.normal(0, 5, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y, c=c, vmin=-10, vmax=+10, cmap=plt.cm.RdYlBu)
ax.set_xlim(-5, 13)
ax.set_ylim(-5, 11)
fig.savefig('gaussian_color_coded.png')

Which produces the following output:

Result from the example script

Note that to keep performance as good as possible, the values from the c attribute are averaged inside each pixel of the density map, then the colormap is applied. This is a little different to what scatter would converge to in the limit of many points (since in that case it would apply the color to all the markers than average the colors).

Q&A

Isn't this basically the same as datashader?

This follows the same ideas as datashader, but the aim of mpl-scatter-density is specifically to bring datashader-like functionality to Matplotlib users. Furthermore, mpl-scatter-density is intended to be very easy to install - for example it can be installed with pip. But if you have datashader installed and regularly use bokeh, mpl-scatter-density won't do much for you. Note that if you are interested in datashader and Matplotlib together, there is a work in progress (pull request) by @tacaswell to create a Matplotlib artist similar to that in this package but powered by datashader.

What about vaex?

Vaex is a powerful package to visualize large datasets on N-dimensional grids, and therefore has some functionality that overlaps with what is here. However, the aim of mpl-scatter-density is just to provide a lightweight solution to make it easy for users already using Matplotlib to add scatter density maps to their plots rather than provide a complete environment for data visualization. I highly recommend that you take a look at Vaex and determine which approach is right for you!

Why on earth have you defined scatter_density as a projection?

If you are a Matplotlib developer: I truly am sorry for distorting the intended purpose of projection 😊 . But you have to admit that it's a pretty convenient way to have users get a custom Axes sub-class even if it has nothing to do with actual projection!

Where do you see this going?

There are a number of things we could add to this package, for example a way to plot density maps as contours, or a way to color code each point by a third quantity and have that reflected in the density map. If you have ideas, please open issues, and even better contribute a pull request! 😄

Can I contribute?

I'm glad you asked - of course you are very welcome to contribute! If you have some ideas, you can open issues or create a pull request directly. Even if you don't have time to contribute actual code changes, I would love to hear from you if you are having issues using this package.

[![Build Status](https://dev.azure.com/thomasrobitaille/mpl-scatter-density/_apis/build/status/astrofrog.mpl-scatter-density?branchName=master)](https://dev.azure.com/thomasrobitaille/mpl-scatter-density/_build/latest?definitionId=17&branchName=master)

Running tests

To run the tests, you will need pytest and the pytest-mpl plugin. You can then run the tests with:

pytest mpl_scatter_density --mpl
Owner
Thomas Robitaille
Thomas Robitaille
A customized interface for single cell track visualisation based on pcnaDeep and napari.

pcnaDeep-napari A customized interface for single cell track visualisation based on pcnaDeep and napari. 👀 Under construction You can get test image

ChanLab 2 Nov 07, 2021
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)

MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained

Andreas Köpf 7 Dec 30, 2022
Make visual music sheets for thatskygame (graphical representations of the Sky keyboard)

sky-python-music-sheet-maker This program lets you make visual music sheets for Sky: Children of the Light. It will ask you a few questions, and does

21 Aug 26, 2022
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
Automatically visualize your pandas dataframe via a single print! 📊 💡

A Python API for Intelligent Visual Discovery Lux is a Python library that facilitate fast and easy data exploration by automating the visualization a

Lux 4.3k Dec 28, 2022
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
Fractals plotted on MatPlotLib in Python.

About The Project Learning more about fractals through the process of visualization. Built With Matplotlib Numpy License This project is licensed unde

Akeel Ather Medina 2 Aug 30, 2022
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
Create a visualization for Trump's Tweeted Words Using Python

Data Trump's Tweeted Words This plot illustrates twitter word occurences. We already did the coding I needed for this plot, so I was very inspired to

7 Mar 27, 2022
📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
Generate "Jupiter" plots for circular genomes

jupiter Generate "Jupiter" plots for circular genomes Description Python scripts to generate plots from ViennaRNA output. Written in "pidgin" python w

Robert Edgar 2 Nov 29, 2021
Python script to generate a visualization of various sorting algorithms, image or video.

sorting_algo_visualizer Python script to generate a visualization of various sorting algorithms, image or video.

146 Nov 12, 2022
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
Type-safe YAML parser and validator.

StrictYAML StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification. Priorities: Beautiful API Re

Colm O'Connor 1.2k Jan 04, 2023
Print matplotlib colors

mplcolors Tired of searching "matplotlib colors" every week/day/hour? This simple script displays them all conveniently right in your terminal emulato

Brandon Barker 32 Dec 13, 2022
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
Automatically generate GitHub activity!

Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's

Ricky 4 Jun 07, 2022
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023