OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Overview

Open Stats

Discover and share the KPIs of your OpenSource project.

Release License


OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs for an OpenSource project:

  • Star evolution: What is the popularity of the repo?
  • Good First issues: Is there a focus towards the community?
  • Recurrent collaborators: How many people are involved?
  • Repository traffic: How many visits and clones do we have?

While there many other things to take into account, these metrics help us get a taste on how our project is doing in a single view.

If you'd like to see other metrics or graphics, open an issue or jump into the action!


Requirements

  • Python 3.6+
  • The main dependencies are streamlit and pandas. The configuration is managed with Levy.
  • In terms of permissions, the traffic data requires an account (token) with write to the repo.

You can install OpenStats with:

$ pip install openstats
---> 100%
Successfully installed openstats

How does it work?

OpenStats is a helper tool to build an amazing dashboard from a config file. You can check an example here:

img

To run a streamlit app, we need the following ingredients:

  • app.py file that triggers the application.
  • requirements.txt, where we will just add openstats
  • Optionally, a .streamlit/config.toml config file with the theme.

By creating an openstats.yaml file, we will pick up the necessary information, build the streamlit components and help you generate the theme file 🚀

This means that the final setup can look like this:

  • An app.py with:
    from openstats.app import run
    
    if __name__ == "__main__":  
        run()
  • A requirements.txt file with openstats.
  • An openstats.yaml file following the examples 👇

Theme

To generate the theme file based on the config, you can run openstats-theme after installing openstats.

This will create the .streamlit/config.toml file with the properties defined in our openstats.yaml.

Config

Let's take a look at how to configure openstats.yaml. You can see an example here:

title: "Dashboard title"
logo_file: "Image file to show at the sidebar"

client:  # Information about the repository
  root: "api.github.com"  # We only support GitHub API
  owner: "e.g., pmbrull"
  repo: "e.g., OpenStats"
  start_date: "Start counting stars from this date"  # Format "Aug 1 2021" (`%b %d %Y`)

style:  # To generate the streamlit theme
  primary_color: "#7147E8"  # Also used for the charts coloring
  background_color: "#F9F8FD"
  secondary_background_color: "#EEEAF8"
  text_color: "#37352F"
  font: "sans serif"

social: "
        Free markdown text! Show your badges 💪
        "

Note that the style section is only to centralise and generate the config.toml file for streamlit. The only added value here is that we will use the primary_color for the theme and charts.

If you don't want to add any image to the sidebar, just remove the YAML entry.

More on streamlit themes 👉 blog

Minimum Config

The app can run with as minimum configuration as:

title: "Levy"

client:
  root: "api.github.com"  # We only support GitHub API
  owner: "pmbrull"
  repo: "levy"
  start_date: "Aug 1 2021"  # Format `%b %d %Y`

Secrets

To show the traffic data and to have a higher API query rate, we need to identify ourselves to the GitHub API.

OpenStats only supports authenticated requests. To make things work, there are two options:

  1. Prepare an API_TOKEN environment variable before running the app
  2. Use streamlit secrets when publishing the app. The secret should also be named API_TOKEN.

The app will first try to obtain the token from the environment variables and will fall back to using streamlit secrets.

How to create an access token 👉 docs

Caching

Not all computations are lightning fast. In order to provide the best possible UX, we cache the API results using streamlit memoization features. If you want to refresh the data, there is a clear cache button available.

Publishing

You can create and manage your streamlit apps at https://share.streamlit.io/. You can follow the docs for more information.

Contributing

Take a look at our CONTRIBUTING guide.

Acknowledgements

Thanks to streamlit for an amazing library and the GitHub API for sharing all the information!

License

OpenStats is released under Apache License, Version 2.0

You might also like...
Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

Main repository for Vispy

VisPy: interactive scientific visualization in Python Main website: http://vispy.org VisPy is a high-performance interactive 2D/3D data visualization

NorthPitch is a python soccer plotting library that sits on top of Matplotlib
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

🗾 Streamlit Component for rendering kepler.gl maps
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

This component provides a wrapper to display SHAP plots in Streamlit.
This component provides a wrapper to display SHAP plots in Streamlit.

streamlit-shap This component provides a wrapper to display SHAP plots in Streamlit.

A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

Releases(v0.1.9.3)
Owner
Pere Miquel Brull
Mathematician | Big Data Engineer
Pere Miquel Brull
Keir&'s Visualizing Data on Life Expectancy

Keir's Visualizing Data on Life Expectancy Below is information on life expectancy in the United States from 1900-2017. You will also find information

9 Jun 06, 2022
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Andrew Tavis McAllister 0 Jul 09, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
A filler visualizer built using python

filler-visualizer 42 filler のログをビジュアライズしてスポーツさながら楽しむことができます! Usage (標準入力でvisualizer.pyに渡せばALL OK) 1. 既にあるログをビジュアライズする $ ./filler_vm -t 3 -p1 john_fill

Takumi Hara 1 Nov 04, 2021
Python support for Godot 🐍🐍🐍

Godot Python, because you want Python on Godot ! The goal of this project is to provide Python language support as a scripting module for the Godot ga

Emmanuel Leblond 1.4k Jan 04, 2023
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
Frbmclust - Clusterize FRB profiles using hierarchical clustering, plot corresponding parameters distributions

frbmclust Getting Started Clusterize FRB profiles using hierarchical clustering,

3 May 06, 2022
Automatic data visualization in atom with the nteract data-explorer

Data Explorer Interactively explore your data directly in atom with hydrogen! The nteract data-explorer provides automatic data visualization, so you

Ben Russert 65 Dec 01, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
A dashboard built using Plotly-Dash for interactive visualization of Dex-connected individuals across the country.

Dashboard For The DexConnect Platform of Dexterity Global Working prototype submission for internship at Dexterity Global Group. Dashboard for real ti

Yashasvi Misra 2 Jun 15, 2021
Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Nicolas Kruchten 512 Dec 26, 2022
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Tools for exploratory data analysis in Python

Dora Exploratory data analysis toolkit for Python. Contents Summary Setup Usage Reading Data & Configuration Cleaning Feature Selection & Extraction V

Nathan Epstein 599 Dec 25, 2022
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Dec 29, 2022
阴阳师后台全平台(使用网易 MuMu 模拟器)辅助。支持御魂,觉醒,御灵,结界突破,秘闻副本,地域鬼王。

阴阳师后台全平台辅助 Python 版本:Python 3.8.3 模拟器:网易 MuMu | 雷电模拟器 模拟器分辨率:1024*576 显卡渲染模式:兼容(OpenGL) 兼容 Windows 系统和 MacOS 系统 思路: 利用 adb 截图后,使用 opencv 找图找色,模拟点击。使用

简讯 27 Jul 09, 2022
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

4 Aug 04, 2022
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022