ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

Overview

ToR[e]cSys


News

It is happy to know the new package of Tensorflow Recommenders.


ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).

Installation

TBU

Documentation

The complete documentation for ToR[e]cSys is available via ReadTheDocs website.
Thank you for ReadTheDocs! You are the best!

Implemented Models

1. Subsampling

Model Name Research Paper Year
Word2Vec Omer Levy et al, 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings 2015

2. Negative Sampling

Model Name Research Paper Year
TBU

3. Click through Rate (CTR) Model

Model Name Research Paper Year
Logistic Regression / /
Factorization Machine Steffen Rendle, 2010. Factorization Machine 2010
Factorization Machine Support Neural Network Weinan Zhang et al, 2016. Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction 2016
Field-Aware Factorization Machine Yuchin Juan et al, 2016. Field-aware Factorization Machines for CTR Prediction 2016
Product Neural Network Yanru QU et al, 2016. Product-based Neural Networks for User Response Prediction 2016
Attentional Factorization Machine Jun Xiao et al, 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 2017
Deep and Cross Network Ruoxi Wang et al, 2017. Deep & Cross Network for Ad Click Predictions 2017
Deep Factorization Machine Huifeng Guo et al, 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
Neural Collaborative Filtering Xiangnan He et al, 2017. Neural Collaborative Filtering 2017
Neural Factorization Machine Xiangnan He et al, 2017. Neural Factorization Machines for Sparse Predictive Analytics 2017
eXtreme Deep Factorization Machine Jianxun Lian et al, 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018
Deep Field-Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Deep Matching Correlation Prediction Wentao Ouyang et al, 2019. Representation Learning-Assisted Click-Through Rate Prediction 2019
Deep Session Interest Network Yufei Feng et al, 2019. Deep Session Interest Network for Click-Through Rate Prediction 2019
Elaborated Entire Space Supervised Multi Task Model Hong Wen et al, 2019. Conversion Rate Prediction via Post-Click Behaviour Modeling 2019
Entire Space Multi Task Model Xiao Ma et al, 2019. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate 2019
Field Attentive Deep Field Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Position-bias aware learning framework Huifeng Guo et al, 2019. PAL: a position-bias aware learning framework for CTR prediction in live recommender systems 2019

4. Embedding Model

Model Name Research Paper Year
Matrix Factorization / /
Starspace Ledell Wu et al, 2017 StarSpace: Embed All The Things! 2017

5. Learning-to-Rank (LTR) Model

Model Name Research Paper Year
Personalized Re-ranking Model Changhua Pei et al, 2019. Personalized Re-ranking for Recommendation 2019

Getting Started

There are several ways using ToR[e]cSys to develop a Recommendation System. Before talking about them, we first need to discuss about components of ToR[e]cSys.

A model in ToR[e]cSys is constructed by two parts mainly: inputs and model, and they will be wrapped into a sequential module (torecsys.models.sequential) to be trained by Trainer (torecsys.trainer.Trainer). \

For inputs module (torecsys.inputs), it will handle most kinds of inputs in recommendation system, like categorical features, images, etc, with several kinds of methods, including token embedding, pre-trained image models, etc.

For models module (torecsys.models), it will implement some famous models in recommendation system, like Factorization Machine family. I hope I can make the library rich. To construct a model in the module, in addition to the modules implemented in PyTorch, I will also implement some layers in torecsys.layers which are called by models usually.

After the explanation of ToR[e]cSys, let's move on to the Getting Started. We can use ToR[e]cSys in the following ways:

  1. Run by command-line (In development)

    
    

torecsys build --inputs_config='{}'
--model_config='{"method":"FM", "embed_size": 8, "num_fields": 2}'
--regularizer_config='{"weight_decay": 0.1}'
--criterion_config='{"method": "MSELoss"}'
--optimizer_config='{"method": "SGD", "lr": "0.01"}'
... ```

  1. Run by class method

    
    

import torecsys as trs

build trainer by class method

trainer = trs.trainer.Trainer()
.bind_objective("CTR")
.set_inputs()
.set_model(method="FM", embed_size=8, num_fields=2)
.set_sequential()
.set_regularizer(weight_decay=0.1)
.build_criterion(method="MSELoss")
.build_optimizer(method="SGD", lr="0.01")
.build_loader(name="train", ...)
.build_loader(name="eval", ...)
.set_target_fields("labels")
.set_max_num_epochs(10)
.use_cuda()

start to fit the model

trainer.fit() ```

  1. Run like PyTorch Module

    
    

import torch import torch.nn as nn import torecsys as trs

some codes here

inputs = trs.inputs.InputsWrapper(schema=schema) model = trs.models.FactorizationMachineModel(embed_size=8, num_fields=2)

for i in range(epochs): optimizer.zero_grad() outputs = model(**inputs(batches)) loss = criterion(outputs, labels) loss.backward() optimizer.step() ```

(In development) You can anyone you like to train a Recommender System and serve it in the following ways:

  1. Run by command-line

    > torecsys serve --load_from='{}'
  2. Run by class method

    
    

import torecsys as trs

serving = trs.serving.Model()
.load_from(filepath=filepath) .run() ```

  1. Serve it yourself

    
    

from flask import Flask, request import torecsys as trs

model = trs.serving.Model()
.load_from(filepath=filepath)

@app.route("/predict") def predict(): args = request.json inference = model.predict(args) return inference, 200

if name == "main": app.run() ```

For further details, please refer to the example in repository or read the documentation. Hope you enjoy~

Examples

TBU

Sample Codes

TBU

Sample of Experiments

TBU

Authors

License

ToR[e]cSys is MIT-style licensed, as found in the LICENSE file.

Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021