ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

Overview

ToR[e]cSys


News

It is happy to know the new package of Tensorflow Recommenders.


ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).

Installation

TBU

Documentation

The complete documentation for ToR[e]cSys is available via ReadTheDocs website.
Thank you for ReadTheDocs! You are the best!

Implemented Models

1. Subsampling

Model Name Research Paper Year
Word2Vec Omer Levy et al, 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings 2015

2. Negative Sampling

Model Name Research Paper Year
TBU

3. Click through Rate (CTR) Model

Model Name Research Paper Year
Logistic Regression / /
Factorization Machine Steffen Rendle, 2010. Factorization Machine 2010
Factorization Machine Support Neural Network Weinan Zhang et al, 2016. Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction 2016
Field-Aware Factorization Machine Yuchin Juan et al, 2016. Field-aware Factorization Machines for CTR Prediction 2016
Product Neural Network Yanru QU et al, 2016. Product-based Neural Networks for User Response Prediction 2016
Attentional Factorization Machine Jun Xiao et al, 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 2017
Deep and Cross Network Ruoxi Wang et al, 2017. Deep & Cross Network for Ad Click Predictions 2017
Deep Factorization Machine Huifeng Guo et al, 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
Neural Collaborative Filtering Xiangnan He et al, 2017. Neural Collaborative Filtering 2017
Neural Factorization Machine Xiangnan He et al, 2017. Neural Factorization Machines for Sparse Predictive Analytics 2017
eXtreme Deep Factorization Machine Jianxun Lian et al, 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018
Deep Field-Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Deep Matching Correlation Prediction Wentao Ouyang et al, 2019. Representation Learning-Assisted Click-Through Rate Prediction 2019
Deep Session Interest Network Yufei Feng et al, 2019. Deep Session Interest Network for Click-Through Rate Prediction 2019
Elaborated Entire Space Supervised Multi Task Model Hong Wen et al, 2019. Conversion Rate Prediction via Post-Click Behaviour Modeling 2019
Entire Space Multi Task Model Xiao Ma et al, 2019. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate 2019
Field Attentive Deep Field Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Position-bias aware learning framework Huifeng Guo et al, 2019. PAL: a position-bias aware learning framework for CTR prediction in live recommender systems 2019

4. Embedding Model

Model Name Research Paper Year
Matrix Factorization / /
Starspace Ledell Wu et al, 2017 StarSpace: Embed All The Things! 2017

5. Learning-to-Rank (LTR) Model

Model Name Research Paper Year
Personalized Re-ranking Model Changhua Pei et al, 2019. Personalized Re-ranking for Recommendation 2019

Getting Started

There are several ways using ToR[e]cSys to develop a Recommendation System. Before talking about them, we first need to discuss about components of ToR[e]cSys.

A model in ToR[e]cSys is constructed by two parts mainly: inputs and model, and they will be wrapped into a sequential module (torecsys.models.sequential) to be trained by Trainer (torecsys.trainer.Trainer). \

For inputs module (torecsys.inputs), it will handle most kinds of inputs in recommendation system, like categorical features, images, etc, with several kinds of methods, including token embedding, pre-trained image models, etc.

For models module (torecsys.models), it will implement some famous models in recommendation system, like Factorization Machine family. I hope I can make the library rich. To construct a model in the module, in addition to the modules implemented in PyTorch, I will also implement some layers in torecsys.layers which are called by models usually.

After the explanation of ToR[e]cSys, let's move on to the Getting Started. We can use ToR[e]cSys in the following ways:

  1. Run by command-line (In development)

    
    

torecsys build --inputs_config='{}'
--model_config='{"method":"FM", "embed_size": 8, "num_fields": 2}'
--regularizer_config='{"weight_decay": 0.1}'
--criterion_config='{"method": "MSELoss"}'
--optimizer_config='{"method": "SGD", "lr": "0.01"}'
... ```

  1. Run by class method

    
    

import torecsys as trs

build trainer by class method

trainer = trs.trainer.Trainer()
.bind_objective("CTR")
.set_inputs()
.set_model(method="FM", embed_size=8, num_fields=2)
.set_sequential()
.set_regularizer(weight_decay=0.1)
.build_criterion(method="MSELoss")
.build_optimizer(method="SGD", lr="0.01")
.build_loader(name="train", ...)
.build_loader(name="eval", ...)
.set_target_fields("labels")
.set_max_num_epochs(10)
.use_cuda()

start to fit the model

trainer.fit() ```

  1. Run like PyTorch Module

    
    

import torch import torch.nn as nn import torecsys as trs

some codes here

inputs = trs.inputs.InputsWrapper(schema=schema) model = trs.models.FactorizationMachineModel(embed_size=8, num_fields=2)

for i in range(epochs): optimizer.zero_grad() outputs = model(**inputs(batches)) loss = criterion(outputs, labels) loss.backward() optimizer.step() ```

(In development) You can anyone you like to train a Recommender System and serve it in the following ways:

  1. Run by command-line

    > torecsys serve --load_from='{}'
  2. Run by class method

    
    

import torecsys as trs

serving = trs.serving.Model()
.load_from(filepath=filepath) .run() ```

  1. Serve it yourself

    
    

from flask import Flask, request import torecsys as trs

model = trs.serving.Model()
.load_from(filepath=filepath)

@app.route("/predict") def predict(): args = request.json inference = model.predict(args) return inference, 200

if name == "main": app.run() ```

For further details, please refer to the example in repository or read the documentation. Hope you enjoy~

Examples

TBU

Sample Codes

TBU

Sample of Experiments

TBU

Authors

License

ToR[e]cSys is MIT-style licensed, as found in the LICENSE file.

Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022