An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Overview

Logo

Movie Pundit

Find your next flick by asking the (almost) all-knowing Movie Pundit
Jump to Project Source »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Contributing
  4. License
  5. Contact
  6. Acknowledgments

About The Project

Movie Pundit Action

There are many great streaming services to watch movies online in todays day and age. However, their build in content suggestion system is quite a bit broken and often times distracting, as convenient as it may be. This was the inspiration behind this Project. To iteratively build the best Movie Recommendation System that asks you what type of movie you would like to watch, no tell you what you should be watching in an intrusive way.

Why use Movie Pundit:

  • Fast and Seamless with a catalogue of 5000+ movies to boot
  • Integration with TMDB API allows you quicky read up the entire summary from IMDB itself
  • Created by movie buffs. We have painstakingly created the Content Recommendation Model from Scratch Know More »

Of course, building a recommendation system is a continuous process and requires iterative improvements and matures over time. We will be updating the model on the backend per the issues/user feedback and we aim to make the most authentic recommender on the internet!

Movie Pundit Home

Visit Movie Pundit to check it out now!

(back to top)

Built With

This project is made with :

(back to top)

Getting Started

Before you start working on this project/fork it, it is highly recommended that you check out how the model was developed here : Model ipynb

We can clone the entire project To get a local copy up and running follow these simple example steps.

Prerequisites

This is an example of how to list things you need to use the software and how to install them.

  • pip
    python -m pip install –upgrade pip

Installation

Below is an example of how you can instruct your audience on installing and setting up your app. This template doesn't rely on any external dependencies or services.

  1. Get a free API Key at developers.themoviedb.org/3/getting-started/authentication
  2. Clone the repo
    git clone https://github.com/KaProDes/Movie_Pundit.git
  3. Install pip packages (It is recommended to this in a venv)
    pip install requirements.txt
  4. Edit this line by entering your API key in app.py
    my_api_key = "ENTER YOUR API_KEY"
  5. Launch the Project by writing
    streamlit run app.py

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Contact

Your Name - @KapProDes - [email protected]

Project Link: https://github.com/KaProDes/Movie_Pundit

(back to top)

Acknowledgments

Special thanks to all my teachers and mentors. I have made this project as part of my Social Network Analysis and Big Data Analytics practical learning.

(back to top)

Owner
Kapil Pramod Deshmukh
Web Developer. Learning the nooks and crannies of theoretical Computer Science.
Kapil Pramod Deshmukh
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction

MGNN-SPred This is our Tensorflow implementation for the paper: WenWang,Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. 2020. Bey

Wen Wang 18 Jan 02, 2023
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022