Bundle Graph Convolutional Network

Overview

Bundle Graph Convolutional Network

This is our Pytorch implementation for the paper:

Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bundle Graph Convolutional Network, Paper in ACM DL or Paper in arXiv. In SIGIR'20, Xi'an, China, July 25-30, 2020.

Author: Jianxin Chang ([email protected])

Introduction

Bundle Graph Convolutional Network (BGCN) is a bundle recommendation solution based on graph neural network, explicitly re-constructing the two kinds of interaction and an affiliation into the graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{BGCN20,
  author    = {Jianxin Chang and 
               Chen Gao and 
               Xiangnan He and 
               Depeng Jin and 
               Yong Li},
  title     = {Bundle Recommendation with Graph Convolutional Networks},
  booktitle = {Proceedings of the 43nd International {ACM} {SIGIR} Conference on
               Research and Development in Information Retrieval, {SIGIR} 2020, Xi'an,
               China, July 25-30, 2020.},
  year      = {2020},
}

Requirement

The code has been tested running under Python 3.7.0. The required packages are as follows:

  • torch == 1.2.0
  • numpy == 1.17.4
  • scipy == 1.4.1
  • temsorboardX == 2.0

Usage

The hyperparameter search range and optimal settings have been clearly stated in the codes (see the 'CONFIG' dict in config.py).

  • Train
python main.py 
  • Futher Train

Replace 'sample' from 'simple' to 'hard' in CONFIG and add model file path obtained by Train to 'conti_train', then run

python main.py 
  • Test

Add model path obtained by Futher Train to 'test' in CONFIG, then run

python eval_main.py 

Some important hyperparameters:

  • lrs

    • It indicates the learning rates.
    • The learning rate is searched in {1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3}.
  • mess_dropouts

    • It indicates the message dropout ratio, which randomly drops out the outgoing messages.
    • We search the message dropout within {0, 0.1, 0.3, 0.5}.
  • node_dropouts

    • It indicates the node dropout ratio, which randomly blocks a particular node and discard all its outgoing messages.
    • We search the node dropout within {0, 0.1, 0.3, 0.5}.
  • decays

    • we adopt L2 regularization and use the decays to control the penalty strength.
    • L2 regularization term is tuned in {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2}.
  • hard_window

    • It indicates the difficulty of sampling in the hard-negative sampler.
    • We set it to the top thirty percent.
  • hard_prob

    • It indicates the probability of using hard-negative samples in the further training stage.
    • We set it to 0.8 (0.4 in the item level and 0.4 in the bundle level), so the probability of simple samples is 0.2.

Dataset

We provide one processed dataset: Netease.

  • user_bundle_train.txt

    • Train file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_item.txt

    • Train file.
    • Each line is 'userID\t itemID\n'.
    • Every observed interaction means user u once interacted item i.
  • bundle_item.txt

    • Train file.
    • Each line is 'bundleID\t itemID\n'.
    • Every entry means bundle b contains item i.
  • Netease_data_size.txt

    • Assist file.
    • The only line is 'userNum\t bundleNum\t itemNum\n'.
    • The triplet denotes the number of users, bundles and items, respectively.
  • user_bundle_tune.txt

    • Tune file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_bundle_test.txt

    • Test file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
Owner
M.S. student from E.E., Tsinghua University.
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Pytorch domain library for recommendation systems

TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale

Meta Research 1.3k Jan 05, 2023
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023