This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

Overview

GHCF

This is our implementation of the paper:

Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2021. Graph Heterogeneous Multi-Relational Recommendation. In AAAI'21.

Please cite our AAAI'21 paper if you use our codes. Thanks!

@inproceedings{chen2021graph,
  title={Graph Heterogeneous Multi-Relational Recommendation},
  author={Chen, Chong and Ma, Weizhi and Zhang, Min and Wang, Zhaowei and He, Xiuqiang and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping},
  booktitle={Proceedings of AAAI},
  year={2021},
}

Example to run the codes

Train and evaluate our model:

python GHCF.py

Reproducibility

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Suggestions for parameters

Several important parameters need to be tuned for different datasets, which are:

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Specifically, we suggest to tune "wid" among [0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5]. It's also acceptable to simply make the three weights the same, e.g., self.weight = [0.1, 0.1, 0.1] or self.weight = [0.01, 0.01, 0.01]. Generally, this parameter is related to the sparsity of dataset. If the dataset is more sparse, then a small value of negative_weight may lead to a better performance.

The coefficient parameter determines the importance of different tasks in multi-task learning. In our datasets, there are three loss coefficients λ 1 , λ 2 , and λ 3 . As λ 1 + λ 2 + λ 3 = 1, when λ 1 and λ 2 are given, the value of λ 3 is determined. We suggest to tune the three coefficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1].

Owner
Chong Chen
Tsinghua University
Chong Chen
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022