This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

Overview

GHCF

This is our implementation of the paper:

Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2021. Graph Heterogeneous Multi-Relational Recommendation. In AAAI'21.

Please cite our AAAI'21 paper if you use our codes. Thanks!

@inproceedings{chen2021graph,
  title={Graph Heterogeneous Multi-Relational Recommendation},
  author={Chen, Chong and Ma, Weizhi and Zhang, Min and Wang, Zhaowei and He, Xiuqiang and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping},
  booktitle={Proceedings of AAAI},
  year={2021},
}

Example to run the codes

Train and evaluate our model:

python GHCF.py

Reproducibility

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Suggestions for parameters

Several important parameters need to be tuned for different datasets, which are:

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Specifically, we suggest to tune "wid" among [0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5]. It's also acceptable to simply make the three weights the same, e.g., self.weight = [0.1, 0.1, 0.1] or self.weight = [0.01, 0.01, 0.01]. Generally, this parameter is related to the sparsity of dataset. If the dataset is more sparse, then a small value of negative_weight may lead to a better performance.

The coefficient parameter determines the importance of different tasks in multi-task learning. In our datasets, there are three loss coefficients λ 1 , λ 2 , and λ 3 . As λ 1 + λ 2 + λ 3 = 1, when λ 1 and λ 2 are given, the value of λ 3 is determined. We suggest to tune the three coefficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1].

Owner
Chong Chen
Tsinghua University
Chong Chen
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022