Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Overview

Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

TMER

Code of paper "Temporal Meta-path Guided Explainable Recommendation".

Requirements

python==3.6.12
networkx==2.5
numpy==1.15.0
pandas==1.0.1
pytorch==1.0.0
pytorch-nlp==0.5.0
gensim==3.8.3

You can also install the environment via requirements.txt and environment.yaml.

Data Preparation

The original data can be found in the amazon data website.

For example, the meta_Musical_Instruments.json of Amazon_Music can be found here. The user_rate_item.csv in the code is here (ratings only).

Usage

If you want to change the dataset, you can modify the name in the code.

1.process data (You can ignore this step, if you just want to check TMER.)

python data_process.py

2.learn the user and item representations

python data/path/embed_nodes.py

3.learn the item-item path representations

python data/path/user_history/item_item_representation.py

4.learn the user-item path representations

python data/user_item_representation.py

5.generate user-item and item-item meta-path instances and learn their representations

python data/path/generate_paths.py
python data/path/user_history/meta_path_instances_representation.py

6.sequence item-item paths for each user

python data/path/user_history/user_history.py

7.run the recommendation

python run.py

Cite

If you find this code useful in your research, please consider citing:

@article{chen2021temporal,
  title={Temporal Meta-path Guided Explainable Recommendation},
  author={Chen, Hongxu and Li, Yicong and Sun, Xiangguo and Xu, Guandong and Yin, Hongzhi},
  journal={arXiv preprint arXiv:2101.01433},
  year={2021}
}

or

@inproceedings{10.1145/3437963.3441762,
	author = {Chen, Hongxu and Li, Yicong and Sun, Xiangguo and Xu, Guandong and Yin, Hongzhi},
	title = {Temporal Meta-Path Guided Explainable Recommendation},
	year = {2021},
	booktitle = {Proceedings of the 14th ACM International Conference on Web Search and Data Mining},
	pages = {1056–1064}
}
Owner
Yicong Li
My research interests are recommendation system, natural language processing and topic model. Feel free to contact me.
Yicong Li
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022