A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

Overview

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset

Running the RecoGCN model

python train.py 

Example training output

Time elapsed = 6.89 mins, Training: loss = 389.51047, mrr = 0.63130, ndcg = 0.71369, hr1 = 0.50939, hr3 = 0.69945, hr5 = 0.78027, hr10 = 0.87522 | Val:loss = 2172.41870, mrr = 0.25467, ndcg = 0.40172, hr1 = 0.15110, hr3 = 0.25807, hr5 = 0.33136, hr10 = 0.45893

Example evaluation result

0	lr=0.0001,lamb=0.55,batch_size=400,numNegative=100,featEmbedDim=64,idenEmbedDim=64,outputDim=128,pathNum=7	Test loss:2033.5934; Test mrr:0.25339168; Test ndcg:0.3976466; Test hr1:0.14939758; Test hr3:0.2633283; Test hr5:0.34176204; Test hr10:0.46430722

These variant models below had been supported:

  • ReGCN
  • ReGCN_{MP}
  • RecoGCN

Dependencies (other versions may also work):

  • python == 3.6
  • tensorflow == 1.13.1
  • numpy == 1.16.3
  • h5py == 2.9.0
  • GPUtil ==1.4.0
  • setproctitle == 1.1.10

Dataset

You can download the experiment data from Here. An example loading code is provided as follow.

adj = {0:{}, 1:{}, 2:{}, 3:{}}
with h5py.File(dataset, 'r') as f:
	adj[0][1] = f['adj01'][:]
	adj[1][0] = f['adj10'][:]
	adj[0][2] = f['adj02'][:]
	adj[2][0] = f['adj20'][:]
	adj[0][3] = f['adj03'][:]
	adj[3][0] = f['adj30'][:]

	train_sample = f['train_sample'][:]
	val_sample = f['val_sample'][:]
	test_sample = f['test_sample'][:]
		
	item_freq = f['item_freq'][:]
	user_feature = f['user_feature'][:]
	agent_feature = f['agent_feature'][:]
	item_feature = f['item_feature'][:]

	userCnt = f['userCnt'][()]
	agentCnt = f['agentCnt'][()]
	itemCnt = f['itemCnt'][()]

The data structure is explained as follow.

adj[x][y] denotes the adjancy relationship from x to y. Here, 0 stands for user, 1 is selling agent, 2 and 3 are two kinds of items. The shape of adj[x][y] is [Num_of_node_x ,maximum_link]. Each line stores the node ids of type y who are linked with node x. Note that maximum_link should be the same for each of these relations.

train_sample, val_sample, test_sample are triplet of [user, selling_agent, item] pairs. Each type of node is encoded from 0.

item_freq is [item_id, item_frequency] matrix denotes the occur frequency of each item in train set.

user_feature, agent_feature, item_feature are three featrue matrix of shape [node_num, feature_num]. Here features for each node are multi-hot encoded, and different type of node can have different feature numbers.

Citation

If you use our code or dataset in your research, please cite:

@inproceedings{xu2019relation,
  title={Relation-aware graph convolutional networks for agent-initiated social e-commerce recommendation},
  author={Xu, Fengli and Lian, Jianxun and Han, Zhenyu and Li, Yong and Xu, Yujian and Xie, Xing},
  booktitle={Proceedings of the 28th ACM International Conference on Information and Knowledge Management},
  pages={529--538},
  year={2019}
}
Owner
xfl15
xfl15
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021