A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

Overview

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset

Running the RecoGCN model

python train.py 

Example training output

Time elapsed = 6.89 mins, Training: loss = 389.51047, mrr = 0.63130, ndcg = 0.71369, hr1 = 0.50939, hr3 = 0.69945, hr5 = 0.78027, hr10 = 0.87522 | Val:loss = 2172.41870, mrr = 0.25467, ndcg = 0.40172, hr1 = 0.15110, hr3 = 0.25807, hr5 = 0.33136, hr10 = 0.45893

Example evaluation result

0	lr=0.0001,lamb=0.55,batch_size=400,numNegative=100,featEmbedDim=64,idenEmbedDim=64,outputDim=128,pathNum=7	Test loss:2033.5934; Test mrr:0.25339168; Test ndcg:0.3976466; Test hr1:0.14939758; Test hr3:0.2633283; Test hr5:0.34176204; Test hr10:0.46430722

These variant models below had been supported:

  • ReGCN
  • ReGCN_{MP}
  • RecoGCN

Dependencies (other versions may also work):

  • python == 3.6
  • tensorflow == 1.13.1
  • numpy == 1.16.3
  • h5py == 2.9.0
  • GPUtil ==1.4.0
  • setproctitle == 1.1.10

Dataset

You can download the experiment data from Here. An example loading code is provided as follow.

adj = {0:{}, 1:{}, 2:{}, 3:{}}
with h5py.File(dataset, 'r') as f:
	adj[0][1] = f['adj01'][:]
	adj[1][0] = f['adj10'][:]
	adj[0][2] = f['adj02'][:]
	adj[2][0] = f['adj20'][:]
	adj[0][3] = f['adj03'][:]
	adj[3][0] = f['adj30'][:]

	train_sample = f['train_sample'][:]
	val_sample = f['val_sample'][:]
	test_sample = f['test_sample'][:]
		
	item_freq = f['item_freq'][:]
	user_feature = f['user_feature'][:]
	agent_feature = f['agent_feature'][:]
	item_feature = f['item_feature'][:]

	userCnt = f['userCnt'][()]
	agentCnt = f['agentCnt'][()]
	itemCnt = f['itemCnt'][()]

The data structure is explained as follow.

adj[x][y] denotes the adjancy relationship from x to y. Here, 0 stands for user, 1 is selling agent, 2 and 3 are two kinds of items. The shape of adj[x][y] is [Num_of_node_x ,maximum_link]. Each line stores the node ids of type y who are linked with node x. Note that maximum_link should be the same for each of these relations.

train_sample, val_sample, test_sample are triplet of [user, selling_agent, item] pairs. Each type of node is encoded from 0.

item_freq is [item_id, item_frequency] matrix denotes the occur frequency of each item in train set.

user_feature, agent_feature, item_feature are three featrue matrix of shape [node_num, feature_num]. Here features for each node are multi-hot encoded, and different type of node can have different feature numbers.

Citation

If you use our code or dataset in your research, please cite:

@inproceedings{xu2019relation,
  title={Relation-aware graph convolutional networks for agent-initiated social e-commerce recommendation},
  author={Xu, Fengli and Lian, Jianxun and Han, Zhenyu and Li, Yong and Xu, Yujian and Xie, Xing},
  booktitle={Proceedings of the 28th ACM International Conference on Information and Knowledge Management},
  pages={529--538},
  year={2019}
}
Owner
xfl15
xfl15
Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction

MGNN-SPred This is our Tensorflow implementation for the paper: WenWang,Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. 2020. Bey

Wen Wang 18 Jan 02, 2023
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022