Graph Neural Networks for Recommender Systems

Overview

GNN-RecSys

This project was presented in a 40min talk + Q&A available on Youtube and in a Medium blog post

Graph Neural Networks for Recommender Systems
This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

What kind of recommendation?
For example, an organisation might want to recommend items of interest to all users of its ecommerce platforms.

How can this repository can be used?
This repository is aimed at helping users that wish to experiment with GNNs for recommendation, by giving a real example of code to build a GNN model, train it and serve recommendations.

No training data, experiments logs, or trained model are available in this repository.

What should the data look like?
To run the code, users need multiple data sources, notably interaction data between user and items and features of users and items.

The interaction data sources should be adjacency lists. Here is an example:

customer_id item_id timestamp click purchase
imbvblxwvtiywunh 3384934262863770 2018-01-01 0 1
nzhrkquelkgflone 8321263216904593 2018-01-01 1 0
... ... ... ... ...
cgatomzvjiizvctb 2756920171861146 2019-12-31 1 0
cnspkotxubxnxtzk 5150255386059428 2019-12-31 0 1

The feature data should have node identifier and node features:

customer_id is_male is_female
imbvblxwvtiywunh 0 1
nzhrkquelkgflone 1 0
... ... ...
cgatomzvjiizvctb 0 1
cnspkotxubxnxtzk 0 1

Run the code

There are 3 different usages of the code: hyperparametrization, training and inference. Examples of how to run the code are presented in UseCases.ipynb.

All 3 usages require specific files to be available. Please refer to the docstring to see which files are required.

Hyperparametrization

Hyperparametrization is done using the main.py file. Going through the space of hyperparameters, the loop builds a GNN model, trains it on a sample of training data, and computes its performance metrics. The metrics are reported in a result txt file, and the best model's parameters are saved in the models directory. Plots of the training experiments are saved in the plots directory. Examples of recommendations are saved in the outputs directory.

python main.py --from_beginning -v --visualization --check_embedding --remove 0.85 --num_epochs 100 --patience 5 --edge_batch_size 1024 --item_id_type 'ITEM IDENTIFIER' --duplicates 'keep_all'

Refer to docstrings of main.py for details on parameters.

Training

When the hyperparameters are selected, it is possible to train the chosen GNN model on the available data. This process saves the trained model in the models directory. Plots, training logs, and examples of recommendations are saved.

python main_train.py --fixed_params_path test/fixed_params_example.pkl --params_path test/params_example.pkl --visualization --check_embedding --remove .85 --edge_batch_size 512

Refer to docstrings of main_train.py for details on parameters.

Inference

With a trained model, it is possible to generate recommendations for all users or specific users. Examples of recommendations are printed.

python main_inference.py --params_path test/final_params_example.pkl --user_ids 123456 \
--user_ids 654321 --user_ids 999 \
--trained_model_path test/final_model_trained_example.pth --k 10 --remove .99

Refer to docstrings of main_inference.py for details on parameters.

A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022