Graph Neural Networks for Recommender Systems

Overview

GNN-RecSys

This project was presented in a 40min talk + Q&A available on Youtube and in a Medium blog post

Graph Neural Networks for Recommender Systems
This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

What kind of recommendation?
For example, an organisation might want to recommend items of interest to all users of its ecommerce platforms.

How can this repository can be used?
This repository is aimed at helping users that wish to experiment with GNNs for recommendation, by giving a real example of code to build a GNN model, train it and serve recommendations.

No training data, experiments logs, or trained model are available in this repository.

What should the data look like?
To run the code, users need multiple data sources, notably interaction data between user and items and features of users and items.

The interaction data sources should be adjacency lists. Here is an example:

customer_id item_id timestamp click purchase
imbvblxwvtiywunh 3384934262863770 2018-01-01 0 1
nzhrkquelkgflone 8321263216904593 2018-01-01 1 0
... ... ... ... ...
cgatomzvjiizvctb 2756920171861146 2019-12-31 1 0
cnspkotxubxnxtzk 5150255386059428 2019-12-31 0 1

The feature data should have node identifier and node features:

customer_id is_male is_female
imbvblxwvtiywunh 0 1
nzhrkquelkgflone 1 0
... ... ...
cgatomzvjiizvctb 0 1
cnspkotxubxnxtzk 0 1

Run the code

There are 3 different usages of the code: hyperparametrization, training and inference. Examples of how to run the code are presented in UseCases.ipynb.

All 3 usages require specific files to be available. Please refer to the docstring to see which files are required.

Hyperparametrization

Hyperparametrization is done using the main.py file. Going through the space of hyperparameters, the loop builds a GNN model, trains it on a sample of training data, and computes its performance metrics. The metrics are reported in a result txt file, and the best model's parameters are saved in the models directory. Plots of the training experiments are saved in the plots directory. Examples of recommendations are saved in the outputs directory.

python main.py --from_beginning -v --visualization --check_embedding --remove 0.85 --num_epochs 100 --patience 5 --edge_batch_size 1024 --item_id_type 'ITEM IDENTIFIER' --duplicates 'keep_all'

Refer to docstrings of main.py for details on parameters.

Training

When the hyperparameters are selected, it is possible to train the chosen GNN model on the available data. This process saves the trained model in the models directory. Plots, training logs, and examples of recommendations are saved.

python main_train.py --fixed_params_path test/fixed_params_example.pkl --params_path test/params_example.pkl --visualization --check_embedding --remove .85 --edge_batch_size 512

Refer to docstrings of main_train.py for details on parameters.

Inference

With a trained model, it is possible to generate recommendations for all users or specific users. Examples of recommendations are printed.

python main_inference.py --params_path test/final_params_example.pkl --user_ids 123456 \
--user_ids 654321 --user_ids 999 \
--trained_model_path test/final_model_trained_example.pth --k 10 --remove .99

Refer to docstrings of main_inference.py for details on parameters.

A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022