Cloud-based recommendation system

Overview

Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Purpose

One Web app can return if the consumer will buy the product or not when providing user ID and corresponding product SKU.

Services

This project will use services:

AWS: lambda function, Step functions, Glue (job,notebook,crawler), Athena, SNS, S3, Sagemaker, IAM, Dynamodb, API Gateway.

Confluent cloud (kafka) for streaming data.

Project description

  1. Create a bucket on S3 as the storage location of the data lake, store the raw data in the bucket (raw data zone), and then return the data after ETL to the same bucket (curated zone).

  2. Preview the data, determine the data is useful and meaningful for our project. Use AWS Glue crawler to grab corresponding data catalog (in created database and generated table info). Use Athena to do SQL query. This like Apache Hive, it does not change raw data, but do operations above the raw data.

  3. Create and store stream data. Create a kafka topic on Clonfluent cloud and set schema registry for the corresponding stream data, schema sets as confluent_cloud_kafka-->confluent_kafka_topic_schema.json. Set the kafka producer as confluent_cloud_kafka-->confluent_kafka_producer_lambda.py to push stream data to corresponding kafka topic in different partitions (because this project does not have exact source giving real stream data, we produce stream data manually). Set the consumer (confluent connector with AWS lambda) as confluent_cloud_kafka-->confluent_kafka_consumer_lambda.py to poll the stream data in kafka topic and store them in Dynamodb table.

  4. ETL process. Use lambda function to do data transformation operations based on SQL, corresponding scripts in file lambda_functions(ETL). Create Glue job to integrate new dataset and store in curated zone in data lake, scripts is in glue_job-->glue_job_ETL.py. Use step fuctions to orchestrate ETL workflow based on above lambda functions, ASL script is in step_function(workflow)-->step_functions_for_curated.json.

    This part is based on spark, and it is similar with the project in repo: https://github.com/Yi-Ding111/spark-ETL-based-databricks-aws.

  5. Train learning model (XGBoost). Use sagemaker notebook instance to do some kinds more operations like: EDA and feature engineering, use XGBoost framework to train the data, adjust parameters and try different attributes combinations to find the best one. Scripts is in sagemaker-->xgboost_deploy_sagemaker.ipynb.

  6. Deploy learning model. Get deploy endpoint after machine learning. Create lambda function to invoke the sagemaker endpoint to use the trained model, scripts is in sagemaker-->endpoint_interact_lambda.py. Let the lambda function integrate with API gatway (proxy integration) as the backend. Deploy the API gatewat and use the invoked URL for web applications to do interactions.

  7. Store the application output. Use SNS to publish the output to lambda and update the information into Dynamodb table, scripts is in sagemaker-->prediction_store_dynamodb.py


Acknowledgement

This project is completed with the guidance from Leo Lee (JR academy)


Author: YI DING, Leo Lee

Created at: Dec 2021

Contact: [email protected]

Owner
Yi Ding
Yi Ding
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022