Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Overview

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN)

This is our implementation for the paper:

Su, Y., Zhang, R., Erfani, S., & Xu, Z. (2021). Detecting Beneficial Feature Interactions for Recommender Systems. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI). link1 or Link2

Description

Feature interactions are essential for achieving high accuracy in recommender systems. Many studies take into account the interaction between every pair of features. However, this is suboptimal because some feature interactions may not be that relevant to the recommendation result, and taking them into account may introduce noise and decrease recommendation accuracy. To make the best out of feature interactions, we propose a graph neural network approach to effectively model them, together with a novel technique to automatically detect those feature interactions that are beneficial in terms of recommendation accuracy. The automatic feature interaction detection is achieved via edge prediction with an L0 activation regularization. Our proposed model is proved to be effective through the information bottleneck principle and statistical interaction theory.

Model Structure

Figure2: An Overview of the L0-SIGN Model.

What are in this Repository

This repository contains the following contents:

/
├── code/                   --> (The folder containing the source code)
|   ├── dataloader.py       --> (The code to proceed the data into code-usable format)
|   ├── SIGN_main.py             --> (The main code file. The code is run through this file)
|   ├── SIGN_model.py            --> (Contains the function of our GMCF model.)
|   ├── SIGN_train.py            --> (Contains the code to train and evaluate our GMCF model.)
├── data/                   --> (The folder containing three used datasets)   
|   ├── frappe/             --> (The frappe dataset to evaluate recommendation.)
|   ├── ml-tag/             --> (The MovieLens Tag dataset to evaluate recommendation.)
|   ├── twitter/            --> (The Twitter dataset to evaluate graph classification.)
|   ├── DBLP_v1/            --> (The DBLP dataset to evaluate graph classification.)
├── img/                    --> (The images for README (not used for the code))   
|   ├── SIGN_frame.png      --> (The overall structure of our L0-SIGN model)
├── LICENCE                 --> (The licence file)

Run our code

To run our code, please follow the instructions in our code/ folder.

Cite our paper

Please credit our work by citing the following paper:

@inproceedings{su2021detecting,
  title={Detecting Beneficial Feature Interactions for Recommender Systems},
  author={Su, Yixin and Zhang, Rui and Erfani, Sarah and Xu, Zhenghua},
  booktitle={Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI)},
  year={2021}
}
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022