Handling Information Loss of Graph Neural Networks for Session-based Recommendation

Overview

LESSR

A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) from the paper:
Handling Information Loss of Graph Neural Networks for Session-based Recommendation, Tianwen Chen and Raymong Chi-Wing Wong, KDD '20

Requirements

  • PyTorch 1.6.0
  • NumPy 1.19.1
  • Pandas 1.1.3
  • DGL 0.5.2

Usage

  1. Install the requirements.
    If you use Anaconda, you can create a conda environment with the required packages using the following command.

    conda env create -f packages.yml

    Activate the created conda environment.

    conda activate lessr
    
  2. Download and extract the datasets.

  3. Preprocess the datasets using preprocess.py.
    For example, to preprocess the Diginetica dataset, extract the file train-item-views.csv to the folder datasets/ and run the following command:

    python preprocess.py -d diginetica -f datasets/train-item-views.csv

    The preprocessed dataset is stored in the folder datasets/diginetica.
    You can see the detailed usage of preprocess.py by running the following command:

    python preprocess.py -h
  4. Train the model using main.py.
    If no arguments are passed to main.py, it will train a model using a sample dataset with default hyperparameters.

    python main.py

    The commands to train LESSR with suggested hyperparameters on different datasets are as follows:

    python main.py --dataset-dir datasets/diginetica --embedding-dim 32 --num-layers 4
    python main.py --dataset-dir datasets/gowalla --embedding-dim 64 --num-layers 4
    python main.py --dataset-dir datasets/lastfm --embedding-dim 128 --num-layers 4

    You can see the detailed usage of main.py by running the following command:

    python main.py -h
  5. Use your own dataset.

    1. Create a subfolder in the datasets/ folder.
    2. The subfolder should contain the following 3 files.
      • num_items.txt: This file contains a single integer which is the number of items in the dataset.
      • train.txt: This file contains all the training sessions.
      • test.txt: This file contains all the test sessions.
    3. Each line of train.txt and test.txt represents a session, which is a list of item IDs separated by commas. Note the item IDs must be in the range of [0, num_items).
    4. See the folder datasets/sample for an example of a dataset.

Citation

If you use our code in your research, please cite our paper:

@inproceedings{chen2020lessr,
    title="Handling Information Loss of Graph Neural Networks for Session-based Recommendation",
    author="Tianwen {Chen} and Raymond Chi-Wing {Wong}",
    booktitle="Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '20)",
    pages="1172-–1180",
    year="2020"
}
Owner
Tianwen CHEN
A CS PhD Student in HKUST
Tianwen CHEN
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022