Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Overview

Average-Death-Rate

Displaying plot of death rates from past years in Poland


The goal

  1. collect the data from a CSV file
  2. count the ADR (Average Death Rate) from years 2015-2019 and 2020+
  3. change this data to float and add it into a list
  4. create a python data plot on which OX are the years and OY ADR data

Data source

Data source: death statistics from 1 september 2015


Demo Tests

Just to show how does matplotlib work:

In the real project, I will have two plots on one displayed interface. Those are divided into subplots, which in this case, there will be two of them.


The idea of the first plot. This data is from the actual source (not the one from my code).



Project source

Charts show data where data arrays are the same. First data array that goes on to OX should have the same length as data array on OY, so basically x = y without mentioning data types (except for str and bool). The few things to mention within the code in src directory are here just in case that you want it to work:



Debuggers

While checking if everything goes alright, I have used DBG's in my code and most of them are turned off. To turn them on, you can simply just change the DBG state:

    _DBG8_ = True                   # Other
    _DBG9_ = True                   # Standard debug

I have used _DBG9_ to check if class inside of count.py was giving the right answers. Around the class and programs inside of src directory, after each operation there is a debugger with an if. With a print() function, I could see if the operation was made correctly and at the same time, I was going on to the next line to see clearly if the next operation made was successful:

    if (_DBG9_): print('ls =', ls, '\n\n')



Screenshots and generating plots

All of these screenshots are made from a data science library to visualize data, matplotlib. On matplotlib, I set label of OX axis to 'Years' and OY axis to 'ADR'. Of course, the data for 'Years' and 'ADR' was generated within Operations() class inside of count.py file. Next, I needed to visualize the data on chart, so I used matplotlib plot function to show data on both, OX and OY axis and decorated them a bit by adding marker argument to plot function. I have also added a label to the graph:

    plt.title("ADR data chart from 2015")
    plt.xlabel('Years')         # OX label: years from 2015
    plt.ylabel('ADR')           # OY label: ADR (short: average death rate)


    # 2. adding plot:
    plt.plot(ls_years, ls_main_data, label='ADR', marker='o')      # OX data, OY data,

To show the label of main graph, you need to add the following function:

    plt.legend()

The final result:


The data should be displayed on two plots (or subplots). To do that, subplots() method was used for this. There are two subplots, and one column. To divide this into two rows and one column, the subplots() takes two arguments which describes the number of rows and columns:

    fig, ax = plt.subplots(nrows=row_num, ncols=col_num)

    figure, (axis0, axis1) = plt.subplots(nrows=2, ncols=1)      # In this project, this was made using these args

axis0 and axis1 are describing axis that the plot is on. Then for plot method, we don't use plt.plot(), label or titles because we assign different plots to different axis (in this case):

    figure, (axis0, axis1) = plt.subplots(nrows=2, ncols=1)

    axis0.set_title("ADR data charts 2015 - 2021")
    axis0.set_xlabel('Years')         # OX label: years from 2015
    axis0.set_ylabel('ADR')           # OY label: ADR (short: average death rate)

    axis0.plot(ls_years, ls_main_data, label='ADR', marker='o')      # OX data, OY data
    axis0.legend()
    axis0.grid(True)
    
    
    
    axis1.set_xlabel('Years (2020 - 2021+)')         # OX label: years from 2020
    axis1.set_ylabel('ADR')           # OY label: ADR (short: average death rate)

    axis1.plot(ls_second_years, ls_main_data[5:], label='ADR', marker='o', color='orange')
    axis1.legend()
    axis1.grid(True)
    
    plt.show()

At the end, we give plt.show() method because we want to display the whole data chart. The final result is here:

Updates:

03.09: adding standard deviation plot

Owner
Oliwier Szymański
self-taught coder. Most of my projects are written in Python or Java. I'm trying to learn from mistakes that I made in my codes and not only
Oliwier Szymański
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.

Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o

Prakrisht Dahiya 1 Nov 25, 2021
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Exploratory analysis and data visualization of aircraft accidents and incidents in Brazil.

Exploring aircraft accidents in Brazil Occurrencies with aircraft in Brazil are investigated by the Center for Investigation and Prevention of Aircraf

Augusto Herrmann 5 Dec 14, 2021
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

Pooya 1 Dec 02, 2021
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Mattia Ficarelli 2 Mar 29, 2022
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Plot toolbox based on Matplotlib, simple and elegant.

Elegant-Plot Plot toolbox based on Matplotlib, simple and elegant. 绘制效果 绘制过程 数据准备 每种图标类型的目录下有data.csv文件,依据样例数据填入自己的数据。

3 Jul 15, 2022
web application for flight log analysis & review

Flight Review This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser. It

PX4 Drone Autopilot 145 Dec 20, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
Certificate generating and sending system written in Python.

Certificate Generator & Sender How to use git clone https://github.com/saadhaxxan/Certificate-Generator-Sender.git cd Certificate-Generator-Sender Add

Saad Hassan 11 Dec 01, 2022
又一个云探针

ServerStatus-Murasame 感谢ServerStatus-Hotaru,又一个云探针诞生了(大雾 本项目在ServerStatus-Hotaru的基础上使用fastapi重构了服务端,部分修改了客户端与前端 项目还在非常原始的阶段,可能存在严重的问题 演示站:https://stat

6 Oct 19, 2021
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
Decision Border Visualizer for Classification Algorithms

dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize

Sven Eschlbeck 1 Nov 01, 2021
Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022