Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Overview

Average-Death-Rate

Displaying plot of death rates from past years in Poland


The goal

  1. collect the data from a CSV file
  2. count the ADR (Average Death Rate) from years 2015-2019 and 2020+
  3. change this data to float and add it into a list
  4. create a python data plot on which OX are the years and OY ADR data

Data source

Data source: death statistics from 1 september 2015


Demo Tests

Just to show how does matplotlib work:

In the real project, I will have two plots on one displayed interface. Those are divided into subplots, which in this case, there will be two of them.


The idea of the first plot. This data is from the actual source (not the one from my code).



Project source

Charts show data where data arrays are the same. First data array that goes on to OX should have the same length as data array on OY, so basically x = y without mentioning data types (except for str and bool). The few things to mention within the code in src directory are here just in case that you want it to work:



Debuggers

While checking if everything goes alright, I have used DBG's in my code and most of them are turned off. To turn them on, you can simply just change the DBG state:

    _DBG8_ = True                   # Other
    _DBG9_ = True                   # Standard debug

I have used _DBG9_ to check if class inside of count.py was giving the right answers. Around the class and programs inside of src directory, after each operation there is a debugger with an if. With a print() function, I could see if the operation was made correctly and at the same time, I was going on to the next line to see clearly if the next operation made was successful:

    if (_DBG9_): print('ls =', ls, '\n\n')



Screenshots and generating plots

All of these screenshots are made from a data science library to visualize data, matplotlib. On matplotlib, I set label of OX axis to 'Years' and OY axis to 'ADR'. Of course, the data for 'Years' and 'ADR' was generated within Operations() class inside of count.py file. Next, I needed to visualize the data on chart, so I used matplotlib plot function to show data on both, OX and OY axis and decorated them a bit by adding marker argument to plot function. I have also added a label to the graph:

    plt.title("ADR data chart from 2015")
    plt.xlabel('Years')         # OX label: years from 2015
    plt.ylabel('ADR')           # OY label: ADR (short: average death rate)


    # 2. adding plot:
    plt.plot(ls_years, ls_main_data, label='ADR', marker='o')      # OX data, OY data,

To show the label of main graph, you need to add the following function:

    plt.legend()

The final result:


The data should be displayed on two plots (or subplots). To do that, subplots() method was used for this. There are two subplots, and one column. To divide this into two rows and one column, the subplots() takes two arguments which describes the number of rows and columns:

    fig, ax = plt.subplots(nrows=row_num, ncols=col_num)

    figure, (axis0, axis1) = plt.subplots(nrows=2, ncols=1)      # In this project, this was made using these args

axis0 and axis1 are describing axis that the plot is on. Then for plot method, we don't use plt.plot(), label or titles because we assign different plots to different axis (in this case):

    figure, (axis0, axis1) = plt.subplots(nrows=2, ncols=1)

    axis0.set_title("ADR data charts 2015 - 2021")
    axis0.set_xlabel('Years')         # OX label: years from 2015
    axis0.set_ylabel('ADR')           # OY label: ADR (short: average death rate)

    axis0.plot(ls_years, ls_main_data, label='ADR', marker='o')      # OX data, OY data
    axis0.legend()
    axis0.grid(True)
    
    
    
    axis1.set_xlabel('Years (2020 - 2021+)')         # OX label: years from 2020
    axis1.set_ylabel('ADR')           # OY label: ADR (short: average death rate)

    axis1.plot(ls_second_years, ls_main_data[5:], label='ADR', marker='o', color='orange')
    axis1.legend()
    axis1.grid(True)
    
    plt.show()

At the end, we give plt.show() method because we want to display the whole data chart. The final result is here:

Updates:

03.09: adding standard deviation plot

Owner
Oliwier Szymański
self-taught coder. Most of my projects are written in Python or Java. I'm trying to learn from mistakes that I made in my codes and not only
Oliwier Szymański
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
A small script written in Python3 that generates a visual representation of the Mandelbrot set.

Mandelbrot Set Generator A small script written in Python3 that generates a visual representation of the Mandelbrot set. Abstract The colors in the ou

1 Dec 28, 2021
Custom ROI in Computer Vision Applications

EasyROI Helper library for drawing ROI in Computer Vision Applications Table of Contents EasyROI Table of Contents About The Project Tech Stack File S

43 Dec 09, 2022
Decision Border Visualizer for Classification Algorithms

dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize

Sven Eschlbeck 1 Nov 01, 2021
🌀❄️🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in python3.

Weather-Plotting 🌀 ❄️ 🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in pytho

Giannis Dravilas 21 Dec 10, 2022
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
An interactive GUI for WhiteboxTools in a Jupyter-based environment

whiteboxgui An interactive GUI for WhiteboxTools in a Jupyter-based environment GitHub repo: https://github.com/giswqs/whiteboxgui Documentation: http

Qiusheng Wu 105 Dec 15, 2022
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
Datapane is the easiest way to create data science reports from Python.

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog Share interactive plots and data in 3 lines of Python. Datapane is a Python lib

Datapane 744 Jan 06, 2023
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

ehne 3 Feb 12, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Simple Inkscape Scripting

Simple Inkscape Scripting Description In the Inkscape vector-drawing program, how would you go about drawing 100 diamonds, each with a random color an

Scott Pakin 140 Dec 27, 2022
Dipto Chakrabarty 7 Sep 06, 2022
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
Arras.io Highest Scores Over Time Bar Chart Race

Arras.io Highest Scores Over Time Bar Chart Race This repo contains a python script (make_racing_bar_chart.py) that can generate a csv file which can

Road 2 Jan 16, 2022