The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Overview

Timescale NFT Starter Kit

The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

The NFT Starter Kit will give you a foundation for analyzing NFT trends so that you can bring some data to your purchasing decisions, or just learn about the NFT space from a data-driven perspective. It also serves as a solid foundation for your more complex NFT analysis projects in the future.

We recommend following along with the NFT Starter Kit tutorial to get familar with the contents of this repository.

For more information about the NFT Starter Kit, see the announcement blog post.

Project components

Earn a Time Travel Tiger NFT

Time Travel Tigers is a collection of 20 hand-crafted NFTs featuring Timescale’s mascot: Eon the friendly tiger, as they travel through space and time, spreading the word about time-series data wearing various disguises to blend in. The first 20 people to complete the NFT Starter Kit tutorial can earn a limited edition NFT from the collection, for free! Simply download the NFT Starter Kit, complete the tutorial and fill out this form, and we’ll send one of the limited-edition Eon NFTs to your ETH address (at no cost to you!).

Get started

Clone the nft-starter-kit repository:

git clone https://github.com/timescale/nft-starter-kit.git
cd nft-starter-kit

Setting up the pre-built Superset dashboards

This part of the project is fully Dockerized. TimescaleDB and the Superset dashboard is built out automatically using docker-compose. After completing the steps below, you will have a local TimescaleDB and Superset instance running in containers - containing 500K+ NFT transactions from OpenSea.

The Docker service uses port 8088 (for Superset) and 6543 (for TimescaleDB) so make sure there's no other services using those ports before starting the installation process.

Prerequisites

  • Docker

  • Docker compose

    Verify that both are installed:

    docker --version && docker-compose --version

Instructions

  1. Run docker-compose up --build in the /pre-built-dashboards folder:

    cd pre-built-dashboards
    docker-compose up --build

    See when the process is done (it could take a couple of minutes):

    timescaledb_1      | PostgreSQL init process complete; ready for start up.
  2. Go to http://0.0.0.0:8088/ in your browser and login with these credentials:

    user: admin
    password: admin
    
  3. Open the Databases page inside Superset (http://0.0.0.0:8088/databaseview/list/). You will see exactly one item there called NFT Starter Kit.

  4. Click the edit button (pencil icon) on the right side of the table (under "Actions").

  5. Don't change anything in the popup window, just click Finish. This will make sure the database can be reached from Superset.

  6. Go check out your NFT dashboards!

    Collections dashboard: http://0.0.0.0:8088/superset/dashboard/1

    Assets dashboard: http://0.0.0.0:8088/superset/dashboard/2

Running the data ingestion script

If you'd like to ingest data into your database (be it a local TimescaleDB, or in Timescale Cloud) straight from the OpenSea API, follow these steps to configure the ingestion script:

Prerequisites

Instructions

  1. Go to the root folder of the project:
    cd nft-starter-kit
  2. Create a new Python virtual environment and install the requirements:
    virtualenv env && source env/bin/activate
    pip install -r requirements.txt
  3. Replace the parameters in the config.py file:
    DB_NAME="tsdb"
    HOST="YOUR_HOST_URL"
    USER="tsdbadmin"
    PASS="YOUR_PASSWORD_HERE"
    PORT="PORT_NUMBER"
    OPENSEA_START_DATE="2021-10-01T00:00:00" # example start date (UTC)
    OPENSEA_END_DATE="2021-10-06T23:59:59" # example end date (UTC)
  4. Run the Python script:
    python opensea_ingest.py
    This will start ingesting data in batches, ~300 rows at a time:
    Start ingesting data between 2021-10-01 00:00:00+00:00 and 2021-10-06 23:59:59+00:00
    ---
    Fetching transactions from OpenSea...
    Data loaded into temp table!
    Data ingested!
    Data has been backfilled until this time: 2021-10-06 23:51:31.140126+00:00
    ---
    You can stop the ingesting process anytime (Ctrl+C), otherwise the script will run until all the transactions have been ingested from the given time period.

Ingest the sample data

If you don't want to spend time waiting until a decent amount of data is ingested, you can just use our sample dataset which contains 500K+ sale transactions from OpenSea (this sample was used for the Superset dashboard as well)

Prerequisites

Instructions

  1. Go to the folder with the sample CSV files (or you can also download them from here):
    cd pre-built-dashboards/database/data
  2. Connect to your database with PSQL:
    psql -x "postgres://host:port/tsdb?sslmode=require"
    If you're using Timescale Cloud, the instructions under How to Connect provide a customized command to run to connect directly to your database.
  3. Import the CSV files in this order (it can take a few minutes in total):
    \copy accounts FROM 001_accounts.csv CSV HEADER;
    \copy collections FROM 002_collections.csv CSV HEADER;
    \copy assets FROM 003_assets.csv CSV HEADER;
    \copy nft_sales FROM 004_nft_sales.csv CSV HEADER;
  4. Try running some queries on your database:
    SELECT count(*), MIN(time) AS min_date, MAX(time) AS max_date FROM nft_sales 
Design your own matplotlib stylefile interactively

Tired of playing with font sizes and other matplotlib parameters every time you start a new project or write a new plotting function? Want all you plots have the same style? Use matplotlib configurat

yobi byte 207 Dec 08, 2022
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
Color scales in Python for humans

colorlover Color scales for humans IPython notebook: https://plot.ly/ipython-notebooks/color-scales/ import colorlover as cl from IPython.display impo

Plotly 146 Sep 25, 2022
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
This is a Cross-Platform Plot Manager for Chia Plotting that is simple, easy-to-use, and reliable.

Swar's Chia Plot Manager A plot manager for Chia plotting: https://www.chia.net/ Development Version: v0.0.1 This is a cross-platform Chia Plot Manage

Swar Patel 1.3k Dec 13, 2022
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
又一个云探针

ServerStatus-Murasame 感谢ServerStatus-Hotaru,又一个云探针诞生了(大雾 本项目在ServerStatus-Hotaru的基础上使用fastapi重构了服务端,部分修改了客户端与前端 项目还在非常原始的阶段,可能存在严重的问题 演示站:https://stat

6 Oct 19, 2021
Visualization of the World Religion Data dataset by Correlates of War Project.

World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ

Emile Bangma 1 Oct 15, 2022
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
A workshop on data visualization in Python with notebooks and exercises for following along.

Beyond the Basics: Data Visualization in Python The human brain excels at finding patterns in visual representations, which is why data visualizations

Stefanie Molin 162 Dec 05, 2022
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
Decision Border Visualizer for Classification Algorithms

dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize

Sven Eschlbeck 1 Nov 01, 2021
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023