Movie recommendation using RASA, TigerGraph

Overview

Demo run:

The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph,

IMAGE ALT TEXT HERE

Steps to run this solution:

Step-0:

Step-1: (Scroll down for detailed setup instructions)

  • cd Movie_Chatbot

Terminal-1:

  • $ rasa train
  • $ rasa run -m models --enable-api --cors "*" --debug

Terminal-2:

  • $ rasa run actions

Step-2: (Scroll down for detailed setup instructions)

  • Run tgcloud solution

Project Overview: Movie recommendations using RASA + TigerGraph

Conversational recommendation systems (CRS) using knowledge graphs is a hot topic as they intend to return the best real-time recommendations to users through a multi-turn interactive conversation. CRS allows users to provide their feedback during the conversation, unlike the traditional recommendation systems. CRS can combine the knowledge of the predefined user profile with the current user requirements to output custom yet most relevant recommendations or suggestions. This work will implement a chatbot using the open-source chatbot development framework - RASA and the most powerful, super-fast, and leading cloud graph database - TigerGraph.

NOTE: This help page will not go into the depth of RASA, TigerGraph functionalities. This help page will touch base and demo how TigerGraph can be integrated with RASA.

Technological Stack

Here is the high-level outline of the technological stack used in this demo project,

Putting things to work

Step-1: (RASA) Implement language models, user intents and backend actions

Beginner tutorial: This is a very good spot to learn about setting up a basic chatbot using RASA and understanding the core framework constructs.

Step-1a: Install RASA

Open a new terminal and setup RASA using the below commands:

  • $ python3 -m virtualenv -p python3 .
  • $ source bin/activate
  • $ pip install rasa

Step-1b: Create new RASA project

  • $ rasa init

After the execution of the above command, a new RASA 'Movie_Chatbot' project will be created in the current directory as shown below,

Below is a kick-off conversation with the newly created chatbot,

Ya, that's quite simple to create a chatbot now with RASA!

Step-1c: Define intents, stories, action triggers

Now, navigate to the project folder Movie_Chatbot/data and modify the default nlu.yml and rules.yml files by adding intents, rules for our movie recommendation business usecase as show below,

Step-1d: Install the TigerGraph python library using pip with the below command,

  • pip install pyTigerGraph

Step-1e: Define action endpoints

Now, navigate to the project folder Movie_Chatbot/actions and modify the actions.py file to include TigerGraph connection parameters and action definitions with the respective movie recommendation CSQL query as show below,

Add the defined action method to the domain.yml as shown below,

Here, 'RecommendMovies' is the name of the CSQL query in the tgcloud database which will discuss in detail in the next section.

With this step, we are done with the installation and configuration of the RASA chatbot.

Step-2: (TigerGraph) Setup TigerGraph database and querying APIs

Beginner tutorial: This is a very good spot to learn about setting up a tigergraph database on the cloud and implementing CSQL queries,

Step-2a: Setup tgcloud database

  • Go to, http://tgcloud.io/ and create a new account.

  • Activate the account.

  • Go to, "My Solutions" and click "Create Solution"

  • Select the starter kit as shown below then click Next twice.

  • Provide a solution name, password tags, and subdomain as needed, and then click 'Next'

  • Enter Submit and close your eyes for the magic!

And Yes!, the TigerGraph Movie recommendation Graph database is created. Buckle up a few more things to do!

  • Go to, GraphStudio and 'Load Data' by selecting the *.csv files and hit the 'play' button as shown below.

  • Once the data is loaded, data statistics should display a green 'FINISHED' message as shown below.

  • Go to, 'Write Queries' and implement the CSQL queries here as shown below,

  • Save the CSQL query and publish it using the 'up arrow' button.

  • Lets, test the query by running with a sample input as shown below,

All Set! The TigerGraph Database is up and running. Are we done? Almost! There is one more thing to do!

Step-2b: Configure secret token

  • Let's set up the secret key access to the cloud TigerGraph API as it is very crucial to ensure a secure way of providing access to the data.

  • Go to, Admin Dashboard->Users->Management and define a secret key as shown below,

  • NOTE: Please remember to copy the key to be used in the RASA connection configuration (Movie_ChatBot/actions/actions.py)

Step-3: (Web UI) Setting up a web ui for the RASA chatbot

  • In this work, we are using an open-source javascript-based chatbot UI to interact with the RASA solution we implemented in Step-1.

  • The RASA server endpoint is configured in the widget/static/Chat.js as shown below,

All right, we are one step close to seeing the working of the TigerGraph and RASA integration.

Step-4: (RASA+TigerGraph) Start RASA and run Actions

Run the below commands in separate terminals,

Terminal-1:

  • $ rasa train
  • $ rasa run -m models --enable-api --cors "*" --debug

Terminal-2:

  • $ rasa run actions

Step-5: (ChatBot UI) Open Chatbot User interface

Hit open widget/index.html to start interacting with the TigerBot movie recommendation engine!

Yes, we are DONE!

I hope this source is informative and helpful.

References:

Owner
Sudha Vijayakumar
Graduate student | Aspiring Software Engineer - Applied Data Science AI/ML/DL
Sudha Vijayakumar
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
Create charts with Python in a very similar way to creating charts using Chart.js

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the t

Nicolas H 68 Dec 08, 2022
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 820 Jan 06, 2023
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
100 Days of Code The Complete Python Pro Bootcamp for 2022

100-Day-With-Python 100 Days of Code - The Complete Python Pro Bootcamp for 2022. In this course, I spend with python language over 100 days, and I up

Rajdip Das 8 Jun 22, 2022
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
Productivity Tools for Plotly + Pandas

Cufflinks This library binds the power of plotly with the flexibility of pandas for easy plotting. This library is available on https://github.com/san

Jorge Santos 2.7k Dec 30, 2022
The interactive graphing library for Python (includes Plotly Express) :sparkles:

plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En

Plotly 12.7k Jan 05, 2023
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022
Squidpy is a tool for the analysis and visualization of spatial molecular data.

Squidpy is a tool for the analysis and visualization of spatial molecular data. It builds on top of scanpy and anndata, from which it inherits modularity and scalability. It provides analysis tools t

Theis Lab 251 Dec 19, 2022
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Exploratory analysis and data visualization of aircraft accidents and incidents in Brazil.

Exploring aircraft accidents in Brazil Occurrencies with aircraft in Brazil are investigated by the Center for Investigation and Prevention of Aircraf

Augusto Herrmann 5 Dec 14, 2021
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs.

EPViz (EEG Prediction Visualizer) EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs. A lig

Jeff 2 Oct 19, 2022
Create SVG drawings from vector geodata files (SHP, geojson, etc).

SVGIS Create SVG drawings from vector geodata files (SHP, geojson, etc). SVGIS is great for: creating small multiples, combining lots of datasets in a

Neil Freeman 78 Dec 09, 2022