Fast 1D and 2D histogram functions in Python

Overview

Azure Status asv

About

Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, and can handle for example non-regular binning, but this versatility comes at the expense of performance.

The fast-histogram mini-package aims to provide simple and fast histogram functions for regular bins that don't compromise on performance. It doesn't do anything complicated - it just implements a simple histogram algorithm in C and keeps it simple. The aim is to have functions that are fast but also robust and reliable. The result is a 1D histogram function here that is 7-15x faster than numpy.histogram, and a 2D histogram function that is 20-25x faster than numpy.histogram2d.

To install:

pip install fast-histogram

or if you use conda you can instead do:

conda install -c conda-forge fast-histogram

The fast_histogram module then provides two functions: histogram1d and histogram2d:

from fast_histogram import histogram1d, histogram2d

Example

Here's an example of binning 10 million points into a regular 2D histogram:

In [1]: import numpy as np

In [2]: x = np.random.random(10_000_000)

In [3]: y = np.random.random(10_000_000)

In [4]: %timeit _ = np.histogram2d(x, y, range=[[-1, 2], [-2, 4]], bins=30)
935 ms ± 58.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [5]: from fast_histogram import histogram2d

In [6]: %timeit _ = histogram2d(x, y, range=[[-1, 2], [-2, 4]], bins=30)
40.2 ms ± 624 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

(note that 10_000_000 is possible in Python 3.6 syntax, use 10000000 instead in previous versions)

The version here is over 20 times faster! The following plot shows the speedup as a function of array size for the bin parameters shown above:

Comparison of performance between Numpy and fast-histogram

as well as results for the 1D case, also with 30 bins. The speedup for the 2D case is consistently between 20-25x, and for the 1D case goes from 15x for small arrays to around 7x for large arrays.

Q&A

Why don't the histogram functions return the edges?

Computing and returning the edges may seem trivial but it can slow things down by a factor of a few when computing histograms of 10^5 or fewer elements, so not returning the edges is a deliberate decision related to performance. You can easily compute the edges yourself if needed though, using numpy.linspace.

Doesn't package X already do this, but better?

This may very well be the case! If this duplicates another package, or if it is possible to use Numpy in a smarter way to get the same performance gains, please open an issue and I'll consider deprecating this package :)

One package that does include fast histogram functions (including in n-dimensions) and can compute other statistics is vaex, so take a look there if you need more advanced functionality!

Are the 2D histograms not transposed compared to what they should be?

There is technically no 'right' and 'wrong' orientation - here we adopt the convention which gives results consistent with Numpy, so:

numpy.histogram2d(x, y, range=[[xmin, xmax], [ymin, ymax]], bins=[nx, ny])

should give the same result as:

fast_histogram.histogram2d(x, y, range=[[xmin, xmax], [ymin, ymax]], bins=[nx, ny])

Why not contribute this to Numpy directly?

As mentioned above, the Numpy functions are much more versatile, so they could not be replaced by the ones here. One option would be to check in Numpy's functions for cases that are simple and dispatch to functions such as the ones here, or add dedicated functions for regular binning. I hope we can get this in Numpy in some form or another eventually, but for now, the aim is to have this available to packages that need to support a range of Numpy versions.

Why not use Cython?

I originally implemented this in Cython, but found that I could get a 50% performance improvement by going straight to a C extension.

What about using Numba?

I specifically want to keep this package as easy as possible to install, and while Numba is a great package, it is not trivial to install outside of Anaconda.

Could this be parallelized?

This may benefit from parallelization under certain circumstances. The easiest solution might be to use OpenMP, but this won't work on all platforms, so it would need to be made optional.

Couldn't you make it faster by using the GPU?

Almost certainly, though the aim here is to have an easily installable and portable package, and introducing GPUs is going to affect both of these.

Why make a package specifically for this? This is a tiny amount of functionality

Packages that need this could simply bundle their own C extension or Cython code to do this, but the main motivation for releasing this as a mini-package is to avoid making pure-Python packages into packages that require compilation just because of the need to compute fast histograms.

Can I contribute?

Yes please! This is not meant to be a finished package, and I welcome pull request to improve things.

Owner
Thomas Robitaille
Thomas Robitaille
Create SVG drawings from vector geodata files (SHP, geojson, etc).

SVGIS Create SVG drawings from vector geodata files (SHP, geojson, etc). SVGIS is great for: creating small multiples, combining lots of datasets in a

Neil Freeman 78 Dec 09, 2022
This is a Cross-Platform Plot Manager for Chia Plotting that is simple, easy-to-use, and reliable.

Swar's Chia Plot Manager A plot manager for Chia plotting: https://www.chia.net/ Development Version: v0.0.1 This is a cross-platform Chia Plot Manage

Swar Patel 1.3k Dec 13, 2022
Flame Graphs visualize profiled code

Flame Graphs visualize profiled code

Brendan Gregg 14.1k Jan 03, 2023
Multi-class confusion matrix library in Python

Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References

Sepand Haghighi 1.3k Dec 31, 2022
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin

AutoViz and Auto_ViML 1k Jan 02, 2023
Simple and fast histogramming in Python accelerated with OpenMP.

pygram11 Simple and fast histogramming in Python accelerated with OpenMP with help from pybind11. pygram11 provides functions for very fast histogram

Doug Davis 28 Dec 14, 2022
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
Productivity Tools for Plotly + Pandas

Cufflinks This library binds the power of plotly with the flexibility of pandas for easy plotting. This library is available on https://github.com/san

Jorge Santos 2.7k Dec 30, 2022
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things

Genuary 2022 I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things. Every day there is a new prompt for making

Joaquín Feltes 1 Jan 10, 2022
📊 Extensions for Matplotlib

📊 Extensions for Matplotlib

Nico Schlömer 519 Dec 30, 2022
Render tokei's output to interactive sunburst chart.

Render tokei's output to interactive sunburst chart.

134 Dec 15, 2022
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
Rockstar - Makes you a Rockstar C++ Programmer in 2 minutes

Rockstar Rockstar is one amazing library, which will make you a Rockstar Programmer in just 2 minutes. In last decade, people learned C++ in 21 days.

4k Jan 05, 2023